

ಬೀ.ಎಂ.ಎಸ್. ತಾಂತ್ರಿಕ ಮಹಾವಿದ್ಯಾಲಯ

(ಸ್ವಾಯತ್ತ ವಿದ್ಯಾ ಸಂಸ್ಥ)

B.M.S. COLLEGE OF ENGINEERING, BENGALURU - 19 (Autonomous College under VTU)

Department of ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Scheme and Syllabus III to VIII Semester For the Batch Admitted in the Year 2023

ಬಿ.ಎಂ.ಎಸ್. ತಾಂತ್ರಿಕ ಮಹಾವಿದ್ಯಾಲಯ ಬುಲ್ ಟೆಂಪಲ್ ರಸ್ತೆ, ಬೆಂಗಳೂರು – 560 019

B.M.S. COLLEGE OF ENGINEERING, BENGALURU - 19
Bull Temple Road, Bengaluru - 560 019

Autonomous Institute, Affiliated to VTU
DEPARTMENT OF Artificial Intelligence & Data Science

Vision of the Institute

Promoting Prosperity of mankind by augmenting Human Resource Capital through Quality Technical Education Training.

Mission of the Institute

Accomplish Excellence in the field of Technical Education through Education, Research and Service needs of society

Vision of the Department

Develop globally competent professionals in the field of Artificial Intelligence & Data Science for the betterment of self and society.

Mission of the Department

State of the art curriculum design and infrastructure facilities to impart quality

Promote high quality research through industry academia collaborations

Inculcate professional ethics and promote sustainable solutions for society

Autonomous Institute, Affiliated to VTU DEPARTMENT OF Artificial Intelligence & Data Science

Semester-III

No.	Course	Code	Course Title	(Credit	S	Total Credits	Total Hours
140.	Type	Couc	Course Thre	L	Т	P		
1	BS	23MA3BSSDM	Statistics and Discrete Mathematics	2	1	0	3	4
2	ES	23DC3ESCOA	Computer Organization & Architecture	3	0	0	3	3
3	PC	23DC3PCDSC	Data Structures	3	0	1	4	5
4	PC	23DC3PCDBM	Database Management Systems	3	0	1	4	5
5	PC	23AI3PCIAI	Introduction to AI	3	0	1	4	5
6	PC	23DS3PCFDS	Foundations of Data Science	3	0	0	3	3
		23DC3AEFWD	Full Stack Web Development				1	
7	AE	23DS3AEDAE	Data Analytics with Excel	0	0	1		2
		23DS3AELAT	Technical Writing					
		23NCMC3NS1	NSS					
8	NCMC	CMC 23NCMC3YG1 YOGA		0	0	0	0	1
		23NCMC3PE1	Physical Edu. (Sports and Athletics)					
	TOTAL					4	22	28

PC-15, ES-3, BS-3, AE-1

Autonomous Institute, Affiliated to VTU

Sem	III								
Course Title:	Computer Organization as	Computer Organization and Architecture							
Course Code:	23DC3ESCOA	Total Contact Hours: 40 hours							
L-T-P:	3-0-0	Total Credits:	3						

Unit No.	Topics	Hours
1	Basic Structure of Computers and Instruction Set Architecture: Functional Units, Basic Operational Concepts, Number Representation and Arithmetic Operations, Memory Locations and Addresses, Memory Operations, Instructions, and Instruction Sequencing, Addressing Modes, Stored program concept.	8
2	Introduction to Assembly Language Concepts, Stacks, Subroutines, Additional Instructions, Basic Input/Output: Accessing I/O Devices, Interrupts, Bus Structure, Bus Operation, Arbitration	8
3	Memory System: Basic Concepts, Semiconductor RAM Memories, Read- only Memories, Direct Memory Access, Memory Hierarchy, Cache Memories: Mapping Functions, Virtual Memory	8
	Arithmetic: Addition and Subtraction of Signed Numbers, Design of Fast Adders, Multiplication of Unsigned Numbers, Multiplication of Signed Numbers	
4	Fast Multiplication : Bit-Pair Recoding of Multipliers, Carry-Save Addition of Summands, Summand Addition Tree using 3-2 Reducers, Integer Division, Floating- Point Numbers and Operations: Arithmetic Operations on Floating-Point Numbers, Guard Bits and Truncation, Implementing Floating-Point Operations	8
	Basic Processing Unit: Some Fundamental Concepts, Instruction Execution, Hardware Components, Instruction Fetch and Execution Steps, Hardwired Control	
5	Parallel Computer Architecture: Processor Architecture and Technology Trends, Flynn's Taxonomy of Parallel Architectures, Memory Organization of Parallel Computers: Computers with Distributed Memory Organization, Computers with Shared Memory Organization, Thread-Level Parallelism: Simultaneous Multithreading, Multicore Processors	8

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Pres	cribed Text Book							
Sl.	Book Title	Au	thors		Ed	ition	Publisher	Year
No.								
1.	Computer Organization and Embedded Systems	Vı	arl Hamacher, Zvonko ranesic, Safwat Zaky, araig Manjikian		6	oth Edition	McGraw- Hil	2012
2.	Parallel Programming for Multicore and Cluster Systems	Tł	nomas Rauber, Gudula Runger		2nd Edition		Springer	2013
Refe	rence Text Book							
Sl. No.	Book Title		Authors	Edi	tion	Publisher	Year	
1.	Computer Organization and Design - The Hardware /Software		David A. Patterson, John L. Hennessy	5th Edition		Elsevier	2014	
2.	Interface Computer Organization & Architecture		William Stallings	11th Edition		Pearson	2018	

MOOC Course									
Sl. No.	Course name	Course Offered By	Year	URL					
1.	Computer Architecture and Organization	NPTEL	2022	https://onlinecourses.nptel.ac.in/n oc22_cs88/preview					

Course Outcomes

At the end of the course the student will be able to

CO ₁	Apply the concepts of basic functional units to demonstrate the working of computational
	system.
CO ₂	Analyze the issues of the processor architecture to improve the efficiency in computer
	design.
CO ₃	Design Memory modules and Arithmetic Logic unit for a given specification by analyzing
	performance issues.
CO ₄	Analyze simultaneous multithreading and multicore processing in achieving parallelism.

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3											1		
CO2		3												
CO3			2											
CO4				1							1			

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Proposed Assessment Plan (for 50 marks of CIE)

Tool	No. of Assessments	Marks
Internals	3	40
QUIZ	1	10
To	tal	50

SEE Exam Question paper format -100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

Autonomous Institute, Affiliated to VTU

Semester	III							
Course Title:	Data Structures	Data Structures						
Course Code:	23DC3PCDSC	Total Contact Hours	Total Contact Hours: 40 hours					
L-T-P:	3-0-1	Total Credits:	4					

Unit No.	Topics	Hours
1	Introduction To Data Structure: Data Management concepts, Data types – primitive and non-primitive, Types of Data Structures- Linear & Non-Linear Data Structures. Structures and pointers	8
	Dynamic memory allocation : allocating a block of memory: Malloc, allocating multiple blocks of memory: Calloc, Releasing the used space: Free Altering the size of memory: Realloc.	
2	Linear list: Singly linked list implementation, insertion, deletion and searching operations on linear list, circularly linked lists- insertion, deletion and searching operations for circularly linked lists, doubly linked list implementation, insertion, deletion and searching operations, maintaining directory of names, Manipulation of polynomials (addition), representing sparse matrices.	8
3	Stacks: Operations, array representations of stacks, stack applications - infix to postfix conversion, postfix expression evaluation, and function call tracing, recursion.	8
	Queues: Introduction, Basic concept, linear queue operations, circular queue, priority queues, double ended queues. Applications of Queues. Stack and queue implementation using linked lists	
4	Trees: Definitions, tree representation, properties of trees, Binary tree, Binary tree representation, binary tree properties, binary tree traversals, binary tree implementation, Binary Search Tree operations and its implementation, applications of trees.	8
5	Balanced Trees: AVL Trees, Splay trees, Red- Black Trees – Definitions, Rotation and other basic operations.	8

Autonomous Institute, Affiliated to VTU

Presci	ribed Text Book					
Sl.	Book Title		Authors	Edition	Publisher	Year
No.						
	Fundamentals of		Horowitz, Sahni,		Universities	2008
1.	Data Structures in C		Anderson Freed	Second	Press	
					Oxford	2014
2.	Data Structures using C		Reema Thareja	Second	University press	
Refere	ence Text Book					
Sl.	Book Title	Au	thors	Edition	Publisher	Year
No.						
1.	Data Structures	Aa	ron M.	Fifth	Pearson	2007
1.	using C		nenbaum,		Education	
			didyah Langsam,			
		Mo	oshe J. Augenstein			
2	Data Structures - A Ric		hard F. Gilberg	First	Cengage	2005
	Pseudocode Approach with C		nrouz A. Forouzan		Learning	

E-Bo	ok					
Sl. No.	Book Title	Authors	Edition	Publisher	Year	URL
1.	Data Structures using C	E. Balagurusw amy		McGraw Hill	2013	https://dokumen.pub/data- structures-using-c- 9781259029547- 1259029549.html
2.	Data structures and program design in C	Robert L. Kruse, Clovis L. Tondo, Bruce P. Leung	Second	Prentice Hal	1997	https://cdn.preterhuman.net/tex ts/math/Data Structure And Algorithms/Data%20Structure s%20and%20Program%20Des ign%20in%20C++%20- %20Robert%20L.%20Kruse.p

MO	MOOC Courses						
Sl. No.	Course name	Course Offered By	Year	URL			
1	Data Structures	Coursera	2023	https://www.coursera.org/learn/data- structures			
2	Data Structures and Algorithms	NPTEL	2023	https://nptel.ac.in/ courses/106102064/			

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Course Outcomes

At the end of the course the student will be able to

CO1	Apply the concept of linear and nonlinear data structures for computing problems.
CO2	Analyse the appropriate data structure operations for a given problem
CO3	Design and develop solutions using the linear and nonlinear data structure for a given specification.
CO4	Conduct experiments for demonstrating the operations of different data structures.
CO5	Investigate the given problem and provide solution using competitive platform.

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3												1	
CO2		3										1		
CO3			3											
CO4			3		3						1			
CO5				2					1		1			1

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks
Internals	3	20
QUIZ/AAT	1	5
Lab Component	CIE+ Two Lab Tests	25
Tot	50	

Laboratory Plan

Instructions to Students to be followed in each lab:

- 1. Each Student should write down the program in the observation book and get it evaluated by the respective lab faculty in-charge and then execute the program.
- 2. Each Student should bring the lab record with the programs and output written for the programs completed in their respective previous week and get it evaluated by the lab faculty in-charge. In the record book students should Handwrite the Program Pasting of the printout of the Output or Handwriting of the Output (Output should be written for all the cases).
- 3. Students have to practice following list of programs and additional programming exercises will also be given in lab. Students will be made to solve coding challenges on programming platforms like LeetCode and HackerRank.

Autonomous Institute, Affiliated to VTU

Lab Program	Unit#	Program Details
1	2	Write a program to implement Singly Linked List with following operations a) Create a linked list. b) Insertion of a node at first position, at any position and at end of list. c) Display the contents of the linked list.
2	2	Write a program to Implement Singly Linked List with following operations a) Create a linked list. b) Deletion of first element, specified element and last element in the list. c) Display the contents of the linked list.
3	2	Write a program to Implement Singly Linked List with following operations a) Sort the linked list. b) Reverse the linked list. c) Concatenation of two linked lists
4	2	Write a program to Implement doubly linked list with primitive operations a) Create a doubly linked list. b) Insert a new node to the left of the node. c) Delete the node based on a specific value d) Display the contents of the list
5	3	Write a program to simulate the working of stack using an array with the following: a) Push b) Pop c) Display The program should print appropriate messages for stack overflow, stack underflow
6	3	Write a program to convert a given valid parenthesized infix arithmetic expression to postfix expression. The expression consists of single character operands and the binary operators + (plus), - (minus), * (multiply) and / (divide)
7	3	Write a program to simulate the working of a queue of integers using an array. Provide the following operations a) Insert b) Delete c) Display The program should print appropriate messages for queue empty and queue overflow conditions
8	3	Write a program to simulate the working of a circular queue of integers using an array. Provide the following operations. a) Insert b) Delete c) Display The program should print appropriate messages for queue empty and queue overflow conditions
9	3	Write a program to implement Stack & Queues using Linked Representation
10	4	Write a program a) To construct a binary Search tree. b) To traverse the tree using all the methods i.e., in-order, preorder and post order c) To display the elements in the tree.
11	4	Write a program a) To construct a binary search tree b) To implement iterative inorder traversal c) To delete a given element

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

12	5	Write a program to construct an AVL tree of integers
----	---	--

SEE Question paper format - 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

Autonomous Institute, Affiliated to VTU

Sem	III		
Course Title:	Database Management Sys	tems	
Course Code:	23DC3PCDBM	Total Contact Hours: 4	0 hours
L-T-P:	3-0-1	Total Credits:	4

Unit	Topics	Hour
No.		S
1	Introduction to Database Systems: Introduction, An Example, Characteristics of Database approach, Advantages of using DBMS approach, when not to use a DBMS. Database System Concepts and Architecture: Data models, Schemas and instances, Three schema architecture.	8
	SQL: SQL Data Definition and Data Types specifying basic constraints in SQL, Basic retrieval queries in SQL, Insert, Delete and Update statements in SQL, Additional features of SQL, more complex SQL Queries, Specifying Constraints as Assertions and Triggers, Views (Virtual Tables) in SQL, Schema Change Statement in SQL.	
2	Entity Relation Model: Using High-Level Conceptual Data Models for Database Design, a sample Database Application, Entity types, Entity Sets, Attributes and Keys, Relationship Types, Relationship Sets, Roles and Structural Constraints, Weak Entity types, Refining the ER Design, ER Diagrams, Relationship Types of Degree Higher than two, Relational Database Design using ER to Relational Mapping. Relational Databases: Relational Model Concepts, Relational Model Constraints and Relational Database Schemas, Update Operations, Transactions and Dealing with Constraint Violations, Functional Dependencies	8
3	Relation Algebra: Unary Relational Operations: SELECT and PROJECT, Relational Algebra Operations from Set Theory, Binary Relational Operations: JOIN and DIVISION, Additional Relational Operations, Examples of Queries in Relational Algebra. Normalization: Informal Design Guidelines for Relation Schemas, Functional Dependencies, Normal Forms Based on Primary Keys, General Definitions of Second and Third Normal Forms, Boyce-Codd Normal Form, Multi-valued Dependencies and a Fourth Normal Form, Join Dependencies, Fifth Normal Form.	8
4	Transaction Processing Concepts: Introduction to Transaction Processing, Transaction and System Concepts, Desirable Properties of Transactions, Characterizing Schedules Based on Recoverability, Characterizing Schedules Based on Serializability, Transaction Support in SQL, Two-Phase Locking Techniques for Concurrency Control.	8
5	Storage Systems: Overview of Physical Storage Media, Storage Interfaces, Magnetic Disks, Flash Memory, RAID, Disk-Block Access, Database Backup and Recovery from Catastrophic Failures Indexing: Basic Concepts, Ordered Indices, B+-Tree Index Files, B+-Tree Extensions, Hash Indices, Multiple-Key Access, Creation of Indices, Write-Optimized Index Structures, Bitmap Indices, Indexing of Spatial and Temporal Data Query processing & operations	8

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Pres	cribed Text Book				
Sl. No	Book Title	Authors	Edition	Publisher	Year
1.	Fundamentals of Database Systems	Elmasri and Navathe	7th Edition	Pearson	2016
2.	Database System Concepts	Silberschatz, H Korth and S Sudarshan	7th Edition	McGrawHil 1	2019
Refe	rence Text Book				
Sl. No.	Book Title	Authors	Edition	Publisher	Year
1.	Database Management Systems	Ramakrishnan and Gehrke	3 rd Edition	McGrawHil 1	2014
2.	Database Systems: Design, Implementation, and Management	Peter Rob and Carlos Coronel	8 th Edition	CENGAGE Learning	2009

E-I	E-Book						
Sl. N	Book Title	Authors	Edition	Publisher	Year	URL	
1.	An Introduction to Relational Database Theory	Hugh Darwen	3 rd Edition	Ventus Publishing ApS	2012	https://www.e- booksdirectory.com /details.php?ebook= 3093	
2.	Database System The Complete Book	Hector GarciaMolina,Jef freyD. Ullman, Jennifer Widom	Second Edition	Pearson Education	2009	https://people.inf.elt e.hu/miiqaai/elektro ModulatorDva.pdf	

MO	MOOC Course					
Sl. No.	Course name	Course offered by	Year	URL		
1.	Database Management Systems	SWAYAM	2023	https://onlinecourses.swayam2.ac.in/ce c23_cs10/preview		
2.	Database Management Essentials	Coursera	2023	https://www.coursera.org/learn/databas e-management		

Course Outcomes

At the end of the course the student will be able to

CO1	Apply the concepts of database management systems for various applications.
CO2	Analyze the given database concepts to its correctness.
CO3	Design and demonstrate conceptual models, query and optimization.
CO4	Ability to conduct experiments to demonstrate the various SQL query processing

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3												2	
CO2		3												
CO3			3									2		
CO4			3		3									

Proposed Assessment Plan (for 50 marks of CIE)

Tool	No. of Assessments	Marks
Internals	2	25
QUIZ	1	5
Lab Component	CIE + Lab Test	25
Tot	50	

Laboratory Plan

- 1. Each Student should write down the work carried out and the outputs in the observation book and get it evaluated by the respective lab faculty in-charge.
- 2. Students have to practice following SQL queries and additional exercises will also be given in the lab.

Lab Program	Program Details			
1	Sailor Database			
2	Supplier Database			
3	Salesman Database			
4	Movie Database			
5	Employee Database			

PROGRAM 1: SAILOR DATABASE

Create tables for the following schema:

SAILOR (sid: integer, sname: string, rating: integer, age: real)

BOAT (<u>bid: integer</u>, bname:string, color:string) RESERVES (sid: integer, bid: integer, day: date)

Queries:

- 1) Add the required constraints on the created tables.
- 2) Populate the relations with at least 5 tuples each.
- 3) Select names and ages of all sailors. Rename same as 'Sailor Name'
- 4) Find all sailors with a rating above 7
- 5) Find the sid of sailors who have reserved a red boat
- 6) Find the colors of boats reserved by 'Shyam'
- 7) Delete all boats which have never been reserved.

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

PROGRAM 2: SUPPLIER DATABASE

Create tables for the following schema:

SUPPLIER (sid: integer, name: string, address: string)

PART (pid: integer, name: string, color: string) CATALOG (sid: integer, pid: integer, cost: real)

Queries:

- 1) Add the required constraints on the created tables.
- 2) Populate the relations with at least 5 tuples each.
- 3) Select the ID and names of all the suppliers.
- 4) Select the most costly part available in the catalog.
- 5) Find the name's of parts for which there is some supplier.
- 6) Find the sids of suppliers who supply a red part and a green part.
- 7) Delete all parts of a given ID.

PROGRAM 3: SALESMAN DATABASE

Create tables for the following schema:

SALESMAN (Salesman_id:integer, Name:string, City:string, Commission:integer) CUSTOMER (Customer_id:integer, Cust_Name:string, City:string) ORDERS (Ord_No:integer, Purchase_Amt:real, Ord_Date:date, Customer_id:integer, Salesman id:integer)

Queries:

- 1) Add the required constraints on the created tables.
- 2) Populate the relations with at least 5 tuples each.
- 3) Select the ID and names of all the customers.
- 4) Select the salesman with the highest commission.
- 5) List all the orders placed in descending order of their purchase amount.
- 6) Select customers who have salesmen in their cities.
- 7) Delete all orders placed before Jan 2018.

PROGRAM 4: MOVIE DATABASE

Consider the schema for Movie Database:

ACTOR(Act_id, Act_Name, Act_Gender)

DIRECTOR(Dir_id, Dir_Name, Dir_Phone)

MOVIES(Mov_id, Mov_Title, Mov_Year, Mov_Lang, Dir_id)

MOVIE_CAST(Act_id, Mov_id, Role)

RATING(Mov_id, Rev_Stars)

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Queries:

- i. List the titles of all movies directed by 'Hitchcock'.
- ii. Find the movie names where one or more actors acted in two or more movies.
- iii. List all actors who acted in a movie before 2000 and also in a movie after 2015 (use JOIN
- iv. operation).
- v. Find the title of movies and number of stars for each movie that has at least one rating and find the highest number of stars that movie received. Sort the result by movie title.
- vi. Update rating of all movies directed by 'Steven Spielberg' to 5.

PROGRAM 5: EMPLOYEE DATABASE

Create the following Tables:

LOCATION						
Location_ID	Regional_Group					
122	NEW YORK					
123	DALLAS					
124	CHICAGO					
167	BOSTON					

DEPARTMENT								
Department_ID Name Location_ID								
10	ACCOUNTING	122						
20	RESEARCH	124						
30	SALES	123						
40	OPERATIONS	167						

JOB							
Job_ID	Function						
667	CLERK						
668	STAFF						
669	ANALYST						
670	SALESPERSON						
671	MANAGER						
672	PRESIDENT						

	EMPLOYEE									
EMPLO YEE_ID	LAST_N AME	FIRST_NA ME	MIDDLE _NAME	JOB_I D	MANAG ER_ID	HIREDATE	SAL ARY	COM M	DEPARTM ENT_ID	
7839	MEGAN	JOHN	S	672	NULL	12-DEC-14	5500	NULL	30	
7369	SMITH	JOHN	Q	667	7521	17-DEC-18	800	NULL	20	
7499	ALLEN	KEVIN	J	670	7507	20-FEB-17	1600	300	30	
7505	DOYLE	JEAN	K	671	7839	04-APR-15	2850	NULL	30	
7506	DENNIS	LYNN	S	671	7839	15-MAY-15	2750	NULL	30	
7507	BAKER	LESLIE	D	671	7839	10-JUN-15	2200	NULL	40	
7521	WARK	CYNTHIA	D	670	7505	22-FEB-15	1250	500	30	

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Queries based on the above tables:

Order By Clause:

- 1. List out the employee id, last name in ascending order based on the employee id.
- 2. List out the employee id, name in descending order based on salary column

Group By & Having Clause:

- 3. How many employees who are working in different departments wise in the organization
- 4. List out the department wise maximum salary, minimum salary, average salary of the employees
- 5. List out the job wise maximum salary, minimum salary, average salaries of the employees.
- 6. List out the no.of employees joined in every month in ascending order.
- 7. How many employees joined in 1985?
- 8. How many employees joined in March 1985.
- 9. Which is the department id, having greater than or equal to 3 employees joined in April1985.

Sub-Oueries

- 10. Display the employee who got the maximum salary.
- 11. Display the employees who are working in Sales department
- 12. Display the employees who are working as "Clerk".
- 13. Display the employees who are working in "New York"
- 14. Find out the number of employees working in the "Sales" department.
- 15. Delete the employees who are working in the accounting department.
- 16. Display the second highest salary drawing employee details.

Subquery operators: (ALL, ANY, SOME, EXISTS)

- 17. List out the employees who earn more than every employee in department 30.
- 18. List out the employees who earn more than the lowest salary in department 30.
- 19. Find out which department does not have any employees.

Simple join

- 20. List our employees with their department names
- 21. Display employees with their designations (jobs)
- 22. How many employees are working in the sales department?

Non - Equi Join:

- 23. Display employee details with salary grades.
- 24. List out the no. of employees on grade wise.

Self-Join:

- 25. Display the employee details with their manager names.
- 26. Display the employee details who earn more than their manager's salaries.

Outer Join:

- 27. Display employee details with all departments.
- 28. Display all employees in sales or operation departments.

Set Operators:

- 29. List out the distinct jobs in Sales and Accounting Departments.
- 30. List out the ALL jobs in Sales and Accounting Departments.
- 31. List out the common jobs in Research and Accounting Departments in ascending order.

SEE Exam Question paper format - 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

Autonomous Institute, Affiliated to VTU

Semester	III	III					
Course Title:	Introduction to	Introduction to Artificial Intelligence					
Course Code:	23AI3PCIAI	Total Contact Hou	rs: 40 hours				
L-T-P:	3-0-1	Total Credits:	4				

Unit No.	Topics	Hours
1	Introduction to AI: Foundations of Artificial Intelligence, History of Artificial Intelligence, The State of the Art. Intelligent Agents – Agents and Environments, Concept of rationality, The nature of environments, The structure of agents	8
	Problem solving based on searching : Problems solving Agents, Example problems, Searching for solutions, Uniformed Search strategies – Uniform cost search, Breadth First Search, Depth First Search, Depth Limited Search, Iterative Deepening Depth First	
2	Heuristic Search Strategies: Best-first Search, A* algorithm, Heuristic Functions	8
	Local Search & Optimization: Hill Climbing, Genetic Algorithms	
3	Constraint Satisfaction Problem – Defining constraint satisfaction problems, Constraint propagation, Back tracking search for CSPs, Local search for CSPs	8
	Game theory — Optimal decisions in games, Alpha-Beta Search, Stochastic games, Partially observable games.	
4	Logical Agents - Knowledge-based agents, The Wumpus world, Logic, Propositional logic, Reasoning patterns in Propositional Logic.	8
	First Order Logic - Representation Revisited, Syntax and Semantics of First Order logic, Using First Order logic.	
	Inference in First Order Logic - Propositional Versus First Order Inference, Unification, Forward Chaining, Backward Chaining, Resolution.	
5	Quantifying Uncertainty - Acting under Uncertainty, Basic Probability Notation, Inference using Full Joint Distributions, Independence, Baye's Rule and its use, Wumpus World Revisited.	8

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Presci	Prescribed Text Book							
Sl.	Book Title		Authors	Edition	Publisher	Year		
No.								
	Artificial Intelligence	•	Stuart J. Russell	3 rd Edition	Pearson	2015		
1.			and Peter Norvig					
Refer	Reference Text Book							
Sl.	Book Title Au		thors	Edition	Publisher	Year		
No.								
1	Artificial Intelligence	Elaine Rich, Kevin		3 rd Edition	Tata Mc	2013		
1.		Kn	ight		GrawHill			
	Artificial Intelligence	Geo	orge F Lugar	5 th Edition	Pearson	2011		
2	Structure and		<i>C C</i>					
	strategies for							
	complex problem							
I	solving							

E-Bo	E-Book									
Sl. No.	Book Title	Authors	Edition	Publisher	Year	URL				
1.	Artificial Intelligenc e	Stuart J. Russell and Peter Norvig	3 rd Edition	Pearson	2015	https://people.engr.tamu.edu /guni/csce421/files/AI_Russ ell_Norvig.pdf				
2.						10 Free Must-read Books on AI - KDnuggets				

MC	MOOC Courses									
Sl. No.	Course name	Course Offered By	Year	URL						
1	Knowledge- Based AI: Cognitive Systems	Udacity		https://www.udacity.com/course/knowled ge-based-ai-cognitive-systemsud409						
2	Artificial Intelligence	NPTEL		https://nptel.ac.in/courses/106105077						

Course Outcomes

At the end of the course the student will be able to

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

CO1	Apply basic principles of AI in solutions that require problem solving, inference,
COI	knowledge representation and learning.
CO2	Analyze search and inference algorithms in problem solving.
CO3	Demonstrate knowledge of reasoning, uncertainty and knowledge representation for solving real-world problems.
CO4	Conduct experiments to solve problems using AI techniques.
CO5	Design and implement intelligent agents for real-world applications using AI
003	methods.

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3												3	
CO2		3			2							3		
CO3			2	2										3
CO4				3	3									
CO5				2	2			1	1					3

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks
Internals	2	20
QUIZ/AAT	1	5
Lab Component	CIE+ Two Lab Tests	25
Tota	50	

Laboratory Plan

Instructions to Students to be followed in each lab:

- 1. Each Student should write down the program in the observation book and get it evaluated by the respective lab faculty in-charge and then execute the program.
- 2. Each Student should bring the lab record with the programs and output written for the programs completed in their respective previous week and get it evaluated by the lab faculty in-charge. In the record book students should Handwrite the Program Pasting of the printout of the Output or Handwriting of the Output (Output should be written for all the cases).
- 3. Students have to practice following list of programs and additional programming exercises will also be given in lab. Students will be made to solve coding challenges on programming platforms like

Lab Program	Unit#	Program Details
1	1	Write a program to implement Vacuum Cleaner agent for two rooms
2	1	Implement Iterative deepening search algorithm.
3	1	Solve 8 puzzle problem using BFS algorithm

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

4	2	Implement A* search algorithm.
5	2	Implement Tic –Tac –Toe Game using Alpha-beta pruning
6	3	Write a program to create a knowledge base using prepositional logic and show that the given query entails the knowledge base or not
7	3	Write a program to create a knowledge base using prepositional logic and prove the given query using resolution
8	3	Convert given first order logic statement into Conjunctive Normal Form (CNF).
9	3	Implement unification in first order logic
10	4	Create a knowledgebase consisting of first order logic statements and prove the given query using forward reasoning.

SEE Question paper format - 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

Case Studies on AI

- 1. Develop an Intelligent agent to administer delivery of medicines to appropriate patients
- 2. Implement AI agent to develop pac game
- 3. Use genetic algorithms to optimize cash flow for a business

Autonomous Institute, Affiliated to VTU

Sem	III						
Course Title:	Foundations of Data Science						
Course Code:	23DS3PCFDS	Total Contact Hours: 40 hours					
L-T-P:	3-0-0	Total Credits:	3				

Unit No.	Topics	Hours
1	Introduction to Data Science: Describing Data science, The data science Venn diagram, Python for Data Science, Data science case studies Types of Data: structured versus unstructured data, quantitative versus qualitative data, the four levels of data: nominal, ordinal, interval and ratio Total information awareness, Bonferroni's Principle, Rhine's paradox. The Data Science Process: Overview, Defining research goals, Retrieving data, Cleansing, integrating and transforming data, exploratory data analysis, Build the models, Presenting findings. Data Analytics Lifecycle.	8
2	Statistics & Probability: Statistics, Obtaining data, Sampling Data, Statistical measures, empirical rule. Points estimates, Sampling distributions, Confidence intervals, Hypothesis Tests: Conducting a hypothesis test, One sample t-tests, Type I and type II errors, Hypothesis testing for categorical variables Information Gain & Entropy, Probability Theory, Probability Types, Probability	8
	Distribution Functions, Bayes' Theorem, Inferential Statistics	
3	Correlation Analysis: Types of correlation, correlation coefficient. Regression Analysis: Linear Regression: Simple Linear Regression, Multilinear Regression,p-values, Logistic Regression, Multinomial logistic regression, Time-Series Model, Receiver Operating Characteristic	8
4	Dealing with missing data: single and multiple data imputation, Entropy based techniques, Monte Carlo and MCMC simulations; Correcting inconsistent data: Deduplication, Entity resolution, Pairwise Matching; Fellegi-Sunter Model Dimensionality Reduction: Eigenvalues and Eigenvectors of Symmetric Matrices:Definitions, Computing Eigenvalues and Eigenvectors, Finding Eigenpairs by Power Iteration, Eigenvector matrix Principal-Component Analysis:Example, Using Eigenvectors for Dimensionality Reduction, The matrix of distances Singular-Value Decomposition: Definition, interpretation, Dimensionality Reduction Using SVD, Why Zeroing Low Singular Values Works, Querying Using Concepts, Computing the SVD of a Matrix	8
5	Data Analytics on Text: Major Text Mining Areas – Information Retrieval – Data Mining – Natural Language Processing NLP) – Text analytics tasks: Cleaning and Parsing, Searching, Retrieval, Text Mining, Part-of-Speech Tagging, Stemming, Text Analytics Pipeline. NLP: Major components of NLP, stages of NLP, and NLP applications.	8

Autonomous Institute, Affiliated to VTU

Prescri	Prescribed Text Book											
Sl. No.	Book Title	Authors	Edition	Publisher	Year							
1.	Principles of Data Science	Sinan Qzdemir, Sunil Kakade & Macro Tibaldeschi	Second Edition	Packt	2018							
2.	Fundamentals of Data Science	Sanjeev Wagh, Manisha Bhende, Anuradha Thakare,	1st Edition	CRC Press	2022							
3.	Introducing Data Science: Big Data, Machine Learning, and More	Davy Cielen, Arno D.B. Meysman, Mohamed Ali		Manning	2016							
Referen	nce Text Book											
Sl. No.	Book Title	Authors	Edition	Publisher	Year							
1.	Doing Data Science	Rachel Schutt, Cathy O'Neil		O'Reilly	2014							
2.	Mining Massive Datasets	Jure Leskovec, Anand Rajaraman, Jeffrey D Ullman	2 nd	Dreamtech Press	2016							

E-E	Book					
Sl. No	Book Title	Authors	Editio n	Publisher	Year	URL
1.	Data Science & Machine Learning	DirkP.Kroese, ZdravkoI.Botev , ThomasTaimre, RadislavVaism an	-	Universit y of Queensla nd	2023	https://people.smp.uq.edu. au/DirkKroese/DSML/DS ML.pdf
2.	Becoming a Data Head	ALEX J. GUTMAN JORDAN GOLDMEIER	-	Wiley	2021	https://32net.id/bukaheula/ share/QP2cf2JLdeOPn00y 3Nyu8aXHp1Slq1bc6P4Y cuI4.pdf

MOOC Course									
Sl. No	Course name	Course Offered By	Year	URL					
1.	IBM Data Science	Coursera	2023	https://www.coursera.org/professional-certificates/ibm-data-science					
2.	Foundations of Data Science	SWAYAM	2023	https://onlinecourses.swayam2.ac.in/im b23_mg64/preview					

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Course Outcomes

At the end of the course the student will be able to

CO1	Apply fundamental knowledge of data science for a given dataset
CO2	Analyze and visualize data for knowledge representation.
CO3	Demonstrate proficiency in data analysis.
CO4	Ability to conduct experiments to demonstrate the use of various data science tools

CO-PO-PSO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3												3	
CO2		3												
CO3			3											3
CO4			3		3						1			

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks
Internals	2	40
QUIZ/AAT	2	10
Alternate Assessment Tool	-	
Total	50	

SEE Exam Question paper format - 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Sem:	3 rd		
Course Title:	Full Stack Web development		
Course Code:	22CS3AEFWD		
L-T-P:	0-0-1	Total Credits:	1

Introduction:

This course focuses on developing comprehensive skills in Full Stack Web Application Development. Students will learn to develop both front-end and back-end components of web applications, integrate with databases and external services, and apply best practices in web development. Under this project work, student should develop Advanced Web based Application using technologies such as PHP, Python, Node JS, React, Angular. Students can form a group with minimum of two and maximum of four. Teacher allotted for project work to students should teach full stack technologies like Node JS, React, etc., during Class/Lab hours as per the allotment. Teacher allotted for project work should guide the students in choosing the topic and towards carrying out project work and complete the evaluation of assigned students.

Course Outcomes

At the end of the course the student will be able to

CO1	Apply full-stack web development technologies to solve real-world problems.				
CO2	Design and develop user-centric web applications focused on social and				
	environmental issues.				
CO3	Integrate front-end and back-end components effectively with databases and				
	external services.				
CO4	Demonstrate teamwork and problem-solving skills in project development.				

CO-PO-PSO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3				3							2	3	2
CO2			3		3	3	3					3	2	2
CO3			3		3									3
CO4								3	3	3		2	2	3

Assessment Plan (for 50 marks of CIE)

Tool	No. of Assessments	Marks
Internals		
QUIZ		
Lab Component	1	50
Alternate Assessment Tool		
Total		50

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Rubrics for Project Evaluation:

Criteria	Excellent	Good (3 Marks)	Satisfactory (2 Marks)	Needs Improveme nt (0-1 Marks)
Problem Identificatio n & Relevance (10)	(10 Marks) Clearly articulates a significant social/environme ntal issue with insightful, innovative solutions.	(7 Marks) Recognizes a pertinent issue and offers practical solutions.	(5 Marks) Identifies a basic issue with standard solutions.	(0-2 Marks) Fails to identify a relevant issue or solution.
Technical Implementat ion (10)	(10 Marks) Exemplary implementation of full-stack technologies, showcasing efficiency, scalability, and technical excellence.	(7 Marks) Reliable and proficient technical performance, meeting key objectives.	(5 Marks) Basic implementat ion incorporatin g essential features and functionaliti es.	(0-4 Marks) Inadequate or incomplete technical implementati on.
User Experience & Interface (10)	(10 Marks) Exceptional UI/UX design, prioritizing intuitiveness and user-friendliness, with a professional standard of execution.	(7 Marks) Competent UI design focused on usability and functionality.	(5 Marks) Basic UI design encompassin g essential functions and user needs.	(0-4 Marks) Poor or non- functional user interface, lacking in user- centricity.
Group Participation (5)	(5 marks) Exhibits active engagement, exceptional collaboration, and effective teamwork throughout the project lifecycle.	(4 marks) Consistent participation and constructive collaboration within the group.	(2 marks) Minimal but noticeable participation and occasional contribution s.	(0 marks) Lack of active participation and collaboration in the group.
Presentation (5)	(5 marks) Professional, engaging presentation with outstanding visuals and comprehensive	(4 marks) Well- structured presentation with clear content and effective	(2 marks) Basic presentation with some structure and varying delivery	(1 marks) Disorganized presentation lacking in coherence and adequate content.

Autonomous Institute, Affiliated to VTU

	content, demonstrating exceptional delivery skills.	delivery.	quality.	
Report &	(10 marks)	(7 marks)	(5 marks)	(2-4 marks)
Documentati	Comprehensive	Well-	Basic report	Poorly
on	report covering	structured	with limited	structured
(10)	all project aspects	report with	content,	and
	with meticulous	detailed	covering	incomplete
	documentation,	coverage of	essential	report,
	including	project	project	lacking
	methodology,	implementati	details.	essential
	design, and	on.		details.
	future scope.			

Sl. No	Week	Activity	Content deliverables by the assigned teacher	Technologies/Skills to be Covered
2	1st	Formation of groups. Note: Student groups of size 2 or 3 or 4 Project topic selection	Introduction to Full Stack Technologies & Issue Identification Conceptualizing a	 Overview of full stack development tools and frameworks. Overview of web development (HTML, CSS, JavaScript), Introduction to full stack frameworks (MEAN, MERN), Identifying social/environmental issues for web solutions. Identifying problem and
		by each Group. Presentation: Student and Project topic introduction by each group	Web Application	 understanding social and environmental issues. Brainstorming and planning a web application focused on a chosen social/environmental issue. Tools for wireframing and prototyping (Figma, Sketch),
3	3rd	Design Layout of the Web Pages	Basic Front-end and Back-end Development	 Define layouts based on project scope and objectives. Learning the basics of frontend (HTML, CSS, JavaScript) and back-end (Node.js, Python) development. Front-end: HTML5, CSS3, JavaScript basics.

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

				Back-end: Introduction to Node.js, Express.js, RESTful API development
4	4th ,5th , and 6th	Front end and backend implementation	Data Management and Integration	 Techniques for managing and integrating data in web applications. Database technologies (MongoDB, SQL), Integrating databases with back-end (Mongoose for MongoDB), Basic CRUD operations.
6	7th 8th and 9th	Design and Development of connecting among different web pages	Advanced Front- end & Back-end Technologies Project Development and Mid-term Review	 Delving into advanced frontend technologies (React, Angular) and back-end technologies (databases, server management). Front-end: React.js/Angular for dynamic UI development. Back-end: Advanced Node.js, Authentication (JWT, OAuth), Server-side rendering. Development of the project with guidance and a mid-term review
7	10th	Presentation by each group	Integrating Feedback & Refining Applications	 Applying feedback from the mid-term review and refining the application for better performance and impact. Implementing feedback, Optimization for performance, Security best practices (HTTPS, data validation), User testing and UX improvements.
8	11th	Complete Project Work Demonstration by each group	Final Project Presentations and Submissions	Students present their completed projects and submit their final work for assessment.
	12th	Project Report Preparation		

Text Book:

Supplementary texts and resources

1. **Modern Full-Stack Development: Using Type Script, React, Node.js**, Frank Zammetti ,2020 (1st Edition) ,Apress

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

2. Beginning MERN Stack, Build and Deploy a Full Stack MongoDB, Express, React, Node.js App, Greg Lim, 2021

Tutorial Link:

- 1. https://www.springboard.com/resources/learning-paths/web-development-python-django/
- 2. https://www.coursera.org/learn/introduction-to-web-development-with-html-css-javacript
- 3. https://www.boardinfinity.com/micro-learning/full-stack-development-course-with-certification
- 4. https://www.udemy.com/course/next-js-the-complete-developers-guide/
- 5. https://www.udemy.com/course/nextjs-build-full-stack-apps-with-nextjs-using-redux/
- 6. https://www.udemy.com/course/beginning-javascript/

SEE Exam (50 Marks)

Evaluation of Projects carried out by students from External examiner along with internal faculty.

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

IV Semester

No.	Course	Code	Course Title		edits	3	Total Credits	Total Hours
	Туре			L	Т	Р		
1	BS	23MA4BSLAO	Linear Algebra and Optimization	2	1	0	3	4
2	ES	23DC4ESTOC	Theory of Computation	3	0	0	3	3
3	PC	23DC4PCOPS	Operating Systems	3	0	0	3	3
4	PC	23DS4PCCON	Computer Networks	3	0	0	3	3
5	PC	23DS4PCMLG	Machine Learning	3	0	1	4	5
6	PC	23DC4PCDAA	Design and Analysis of Algorithms	3	0	1	4	5
		23DS4AEDVZ	Data Visualization using Tools					
7	AE	23DS4AEJUL	JULIA for Data Science	0	0	1	1	2
		23DS4AEGIT	Version Controller with GIT					
8	UHV	22MA4HSUHV	Universal Human Values	0	1	0	1	2
		23NCMC4NS2	NSS					
9	NCMC	23NCMC4YG2	YOGA	0	0	0	0	1
		23NCMC4PE2	Physical Edu. (Sports and Athletics)					
	TOTAL						22	28

PC-14, ES-3, BS-3, UHV-1, AE-1

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Course Title	Linear Algebra and Optimization	Course Code	23MA4BSLAO
Credits	03	L-T-P	2-1-0
Contact hours	39		

Course Objectives:

The objectives of the course are to facilitate the learners to

- Appreciate the importance of linear algebra in computer and allied engineering science.
- Gain the knowledge of linear algebra tools and concepts to implement them in their core domain.
- Improve their mathematical thinking and acquire skills required for sustained lifelong learning.

Teaching-Learning Process (General Instructions)

These are sample Strategies; that teachers can use to accelerate the attainment of the various course outcomes.

- Lecture method(L) does not mean only traditional lecture method, but different type of teaching methods may be adopted to develop the outcomes.
- Encourage collaborative (Group Learning) Learning in the class.
- Ask HOT (Higher order Thinking) questions in the class, which promotes critical thinking.
- Adopt Problem-Based Learning (PBL), which fosters students' Analytical skills, and develops
 thinking skills such as the ability to evaluate, generalize, and analyze information rather than simply
 recall it.
- Discuss how every concept can be applied to the real world and when that's possible, it helps to improve the students' understanding.

UNIT-1

CONTINUOUS OPTIMIZATION – 1

[8 hours]

Function of several variables, partial differentiation, local and global optima, convex sets and functions separating hyperplanes, application of Hessian matrix in optimization, gradients of vector-valued functions, gradients of matrices, useful identities for computing gradients.

UNIT-2

CONTINUOUS OPTIMIZATION-2

[7 hours]

Optimization using gradient descent/ascent and NR method.

Sequential search 3-point search and Fibonacci search.

Constrained Optimization, Method of Lagrange multipliers, KKT optimality conditions.

Teaching-Learning Process:	Chalk and Board, Problem-based learning
-----------------------------------	---

UNIT-3

INNER PRODUCT SPACES

[8 hours]

Inner products, inner product spaces, length and orthogonality, orthogonal sets and Bases, projections, Gram-Schmidt orthogonalization process, QR-factorization, least squares problem and least square error. Curve fitting – Principle of least squares, fitting a straight line and fitting a parabola.

Teaching-Learning Process:	Chalk and Board, Problem-based learning
-----------------------------------	---

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

UNIT-4

EIGENVALUES AND EIGENVECTORS

[8 hours]

Introduction, Polynomials of Matrices, Cayley-Hamilton Theorem, eigen spaces of a linear transformation, Characteristic and Minimal Polynomials of Block Matrices, Jordan Canonical form.

Teaching-Learning Process: Chalk and Board, Problem-based learning

UNIT-5

MATRIX DECOMPOSITION AND THEIR APPLICATIONS

[8 hours]

Diagonalization, Orthogonal diagonalization of real symmetric matrices, quadratic forms and its classifications, rank and signature of real quadratic forms, Singular value decomposition. Dimensional reduction – PCA.

Teaching-Learning Process:	Chalk and Board, Problem based learning
-----------------------------------	---

Course outcomes (Course Skills Set)

After successfully completing the course, the student will be able to understand the topics:

Course Code	CO	COURSE OUTCOME (CO)	PO	Strength
	CO 1	Apply the concepts of linear algebra in Computer and Allied Engineering Sciences.	1	3
23MA4BSLIA	CO 2	Demonstrate the applications of computer science and Allied Engineering Science using modern ICT tools.	1 & 5	3

Assessment Details (both CIE and SEE)

Component	Type of assessment	Max. Marks	Total	50 % Weightage	Total	
CIE – Theory	Quiz	10		5		
	AAT	10	100	5	50	
	Test 1	40	100	20		
	Test 2	40		20		
SEE	End Exam	100		50		

CIE methods/question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

SEMESTER END EXAMINATION:

- Each unit consists of one full question.
- Five full questions to be answered.
- To set one question each from Units 1, 2 and 5 and two questions each from Units 3 and 4.

SUGGESTED LEARNING RESOURCES:

Text Books:

- 1. Linear Algebra and its applications, David C. Lay, Steven R. Lay, Judi J Mc. Donald, 6th Edition, 2021, Pearson Education.
- 2. Linear Algebra and its Applications, Gilbert Strang, 4th edition, 2005, Brooks Cole.

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

3. Linear Algebra: An Introduction, Richard Bronson & Gabriel B. Costa, 2nd edition, Academic press.

Reference Books:

- 1. Schaum's outline series -Theory and problems of linear algebra, Seymour Lipschutz, Marc Lipson, 6th edition, 2017, McGraw-Hill Education.
- 2. Linear Algebra and Optimization for Machine Learning, Charu C. Aggarwal, Springer, 2020
- 3. Linear Algebra, Stephen H. Friedberg, Arnold J. Insel and Lawrence E. Spence, Pearson, 2019, Fifth Edition.
- 4. Mathematics for Machine learning, Marc Peter Deisennroth, A. Aldo Faisal, Cheng Soon Ong, 2020, Cambridge University Press.
- 5. Linear Algebra, Kenneth Hoffman, Ray Kunze, 2nd edition, Pearson.

E-books and online course materials:

- 1. https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/index.htm
- 2. https://www.math.ucdavis.edu/~linear/linear.pdf

Online Courses and Video Lectures:

- 1. https://www.coursera.org/learn/linear-algebra-machine-learning
- 2. https://nptel.ac.in/syllabus/111106051/

SEE Exam Question paper format - 100M

All Units have internal choice - Two Ouestions to be asked for 20 Marks each

Autonomous Institute, Affiliated to VTU

Sem	IV		
Course Title:	Theory of Computation		
Course Code:	23DC4ESTOC	Total Contact Hours: 4	0 hours
L-T-P:	3-0-0	Total Credits:	3

Unit No.	Topics	Hours
1	Introduction to Finite Automata: Central Concepts of Automata Theory, Deterministic Finite Automata (DFA), Nondeterministic Finite Automata (NFA), Finite Automata with Epsilon Transition, An Application Text Search. NP Problems solvable in Polynomial Time, Satisfiability Problem	8
2	Regular Expressions and Languages: Regular Expressions, Finite Automata and Regular Expressions, Applications of Regular Expressions, Proving Languages Not to Be Regular, Closure Properties of Regular Languages, Equivalence and Minimization of Automata	8
3	Context Free Grammars and Languages Parse Trees: Context Free Grammars, Parse trees, Applications of Context Free Grammars, Ambiguity in Grammars and Languages, Eliminating Useless Symbols, Computing the Generating and Reachable Symbols, Eliminating Epsilon Productions, Eliminating Unit Productions, Chomsky Normal Form, Greibach Normal form	8
4	Pushdown Automata: Definition of the Pushdown Automaton, The Languages of a PDA, Equivalence of PDA's and CFG's, Deterministic Pushdown Automata, The Pumping Lemma for Context Free Languages, Closure Properties of Context Free Languages	8
5	Introduction to Turing Machine: Problems That Computers Cannot Solve, The Turing Machine, Programming Techniques for Turing Machines, Extensions to the Basic Turing Machine, Restricted Turing Machines, Turing Machines and Computers, Definition of Post Correspondence Problem, A Language That Is Not Recursively Enumerable, An Undecidable Problem That is RE, Other Undecidable Problems	8

Prese	Prescribed Text Book							
Sl.	Book Title	Authors	Edition	Publishe	Yea			
No.				r	r			
1.	Introduction to	John E. Hop croft,	3 rd Editi	Pearson	200			
	Automata Theory,	Rajeev Motwani,	on		7			
	Languages and	Jeffrey						
	Computation	D. Ullman: education						

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Reference Text Book						
Sl. No.	Book Title	Authors	Edition	Publisher	Yea r	
1.	Introduction to	John C Martin	3 rd	Tata McGraw-	2007	
	Languages and		Edition	Hill		
	Automata Theory					
2.	An Introduction to	Peter Linz	5 th	Narosa	2012	
	formal Languages and		Edition	Publishing		
	Automata			House		

E-Bo	ok					
Sl. No.	Book Title	Authors	Editi on	Publisher	Year	URL
1.	Introduction to Theory of Computation	Anil Maheshwa ri, Michiel Smid	-	Carleton Universit y	2019	https://cglab.ca/~mi chiel/TheoryOfCom putation/TheoryOf Computation.pdf

MOC	MOOC Course					
Sl. No.	Course name	Course Offered By	Year	URL		
1.	Automata Theory	edX	2022	https://www.edx.org/course/automata- theory		
2.	Introduction to Automata, Languages and Computation	IITB	2022	https://onlinecourses.nptel.ac.in/noc21_cs 19/preview		
3.	Automata Theory	Stanford University	2022	https://online.stanford.edu/courses/soe- ycsautomata- automata-theory		

Course Outcomes

At the end of the course the student will be able to

CO1	Apply the knowledge of Automata Theory, Grammars & Regular Expressions for the given requirement of the formal language.
CO2	Analyze the given Automata to identify the formal language it represents.
CO3	Design Automata and Grammar for pattern recognition and syntax checking of the given formal language.

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3												2	
CO2		2												
CO3			2									3		

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks			
Internals	3	40			
QUIZ/AAT	2	10			
Total	50				

SEE Exam Question paper format - 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Semester	IV			
Course Title:	Operating Systems			
Course Code:	23DC4PCOPS	Total Contact Hours: 40 hours		
L-T-P:	3-0-0	Total Credits:	3	

Unit No.	Topics	Hours
1	Introduction to Operating Systems: What operating systems do, Operating System operations, Process management, Memory management, Storage management, Protection and security System Structures: Operating System Services, System calls, Operating System design and implementation, Operating System structure, System Boot.	8
2	Processes: Process Concept, Process Scheduling, Operations on Processes, Inter-process Communication. Threads: Overview, Multi-core Programming, Multithreading Models, Implicit Threading, Threading Issues.	8
	Process Synchronization -Background, The Critical section problem, Synchronization hardware, Mutex Locks, Semaphores, Classical problems of synchronization.	
3	CPU Scheduling - Basic concepts, Scheduling criteria, Scheduling algorithms, Multiple-Processor scheduling.	8
	Deadlocks: System Model, Deadlock characterization, Methods for handling deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection and recovery from deadlock.	
4	Memory Management Strategies: Background, Swapping, Contiguous memory allocation, Paging, Structure of page table, Segmentation.	8
	Virtual Memory Management- Background, Demand paging, Page replacement, Thrashing.	
5	Virtual Machines: Overview, Benefits and features, Building Blocks, Types of Virtual Machines and their implementations, Virtualization and Operating System Components, Protection Rings	8
	Case Study: VMWare	

Prescribed Text Book								
Sl.	Book Title	Authors	Edition	Publisher	Year			
No.								
1.	Operating System	Abraham	9th	John Wiley &	2018			
	Concepts	Silberschatz,	Edition	Sons				
		Peter Baer						

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

		Galvin , Greg Gagne			
2.	Modern operating systems	Andrew Tanenbaum	4th Edition	Pearson Education	2009
Refer	ence Text Book				
Sl. No.	Book Title	Authors	Edition	Publisher	Year
1.	Operating System: Internals and Design Principles	William Stallings	8th Edition	Prentice Hall	2014
2.	Schaum's Outline of Operating Systems	J. Archer Harris	Kindle Edition	McGraw-Hill	2001

E-Boo	E-Book								
Sl.	Book	Authors	Editio	Publishe	Year	URL			
No.	Title		n	r					
1.	Operating	Dr. John	-	Universit	2006 &	https://www.cs.uic.edu/~jb			
	Systems	T.Bell		y of	2013	ell/CourseNotes/Operating			
	Course			Illinois		Systems/index.html			
	Notes			Chicago					
2.	Operating	Abraham	9th	John	2018	https://drive.uqu.edu.sa/_/			
	System	Silberschatz	Editio	Wiley &		mskhayat/files/MySubjects			
	Concepts	, Peter Baer	n	Sons		/2017SS%20Operating%20			
	1	Galvin,				Systems/Abraham%20Silb			
		Greg Gagne				erschatz-			
		Greg Sugne				Operating%20System%20			
						Concepts% 20(9th, 2012_12			
						<u>).pdf</u>			

MOOC	MOOC Course								
Sl. No.	Course name	Course Offered By	Year	URL					
1.	Operating Systems	SWAYAM	2023	https://onlinecourses.nptel.ac.in/noc20_cs04/p review					
2.	Introductio n to Operating Systems	Coursera	2023	https://www.coursera.org/specializations/codi o-introduction-operating-systems					

Course Outcomes

At the end of the course the student will be able to

CO1	Apply the different concepts and functionalities of Operating System
CO2	Analyse various Operating system strategies and techniques
CO3	Demonstrate the different functionalities of Operating Systems.

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3												3	
CO2		3												
CO3			2											3

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks
Internals	2	40
QUIZ/AAT	2	10
Tot	50	

SEE Exam Question paper format - 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Semester	IV			
Course Title:	Computer Networks			
Course Code:	23DS4PCCON	Total Contact Hours: 40 hours		
L-T-P:	3-0-0	Total Credits:	3	

Unit	Topics	Hour
No.		S
1	Introduction: Data Communications, Networks, Network Types, Network Models, Protocol Layering, Reference Models: The OSI Reference Model, The TCP/IP Reference Model, Physical Layer: Data and signals Digital Transmission, (D-D Conversion) Bandwidth Utilization, Multiplexing, Switching, Circuit Switched Networks, Packet Switching.	8
2	Data Link Layer: Link Layer Addressing, Error Detection and Correction, Block Coding, Cyclic Codes, Checksum. Data Link Control: DLC Services, Data-Link Layer Protocols, Media Access Control	8
3	Network Layer: Network Layer Services, Packet Switching, Network Layer Performance, IPV4 Addresses. Network Layer Protocols: Internet Protocol, ICMPV4, Unicast Routing, Routing algorithms, Unicast routing protocols, Internet Structure, Routing Information Protocol (RIP), Next Generation IP: IPV6 Addressing, IPV6 Protocol, ICMPv6 Protocol, Transition from IPV4 to IPV6	8
4	Transport Layer: Transport Layer Protocols, User Datagram Protocol, Transmission Control Protocol.	8
5	Application Layer : Introduction, Standard Client Server Protocols, DNS—The Internet's Directory Service, SMTP, SNMP, FTP	8

Pres	cribed Text Book				Prescribed Text Book								
Sl.	Book Title	Authors	Edition	Publisher	Year								
No													
1.	Data Communications	Behrouz A Forouzan	5 th	McGraw	2013								
	and Networking		Edition	Hill									
2.	Computer Networks	Andrew S. Tanenbaum, David	5 th	Pearson	2011								
		J. Wetherall	Edition										
Refe	erence Text Book												
Sl.	Book Title	Authors	Edition	Publisher	Year								
No													
1.	Data and Computer	William Stallings	8 th	Pearson	2008								
	Communication		Edition	Education									
2.	Computer Networks –	Larry L. Peterson and Bruce	4 th	Elsevier	2007								
	A Systems Approach	S. Davie	Edition										

E-B	E-Book								
Sl.	Book Title	Authors	Edition	Publisher	Yea	URL			
No.					r				
1.	An	Peter L	1 st	-	2020	https://intronetworks.cs.luc.ed			
	Introduction	Dordal	Edition			u/current/ComputerNetworks.			
	to Computer					pdf			

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

	Networks					
			a th			
2.	A Top-Down	James F	8 th	Pearson	2021	https://gaia.cs.umass.edu/kuro
	Approach:	Kurose	Edition			se_ross/online_lectures.htm
	Computer	& Keith				
	Networking	W Ross				

Sl. No.	Course name	Course Offered By	Year	URL
1.	Computer Networking	Coursera	2023	https://www.coursera.org/learn/illinoi s-tech-computer-networking
2.	NOC: Computer Networks and Internet Protocol	NPTEL		https://nptel.ac.in/courses/106105183

Course Outcomes

At the end of the course, the student will be able to

CO1	Apply the fundamental concepts of communication in networking.					
CO2	Analyze the various protocols, and techniques in TCP/IP network architecture.					
Develop applications that demonstrate the functionalities of physical, Data Link,						
CO3	Network, Transport or Application layer.					
GO4	Design network topologies to evaluate network performance metrics and troubleshoot					
CO4	connectivity issues using network simulation tools.					

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3													
CO2		3												
CO3			3		1							2		
CO4			•	2	3									2

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks
Internals	3	40
QUIZ/AAT	2	10
Tot	al	50

SEE Exam Question paper format - 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Sem	IV		
Course Title:	Machine Learning		
Course Code:	23DS4PCMLG	Total Contact Hours: 40 ho	urs
L-T-P:	3-0-1	Total Credits:	4

Unit No.	Topics	Hours						
1	Machine Learning Landscape: Introduction, Types of Machine Learning, Challenges of Machine Learning, Testing and Validating.	8						
	Supervised Learning							
	Decision Tree Learning: Decision tree representation, Appropriate problems for decision tree learning, Basic decision tree learning algorithm, Issues in Decision tree learning, CART Training algorithm							
2	Support Vector Machines: Linear SVM, Non Linear SVM, SVM Regression, Under the Hood.							
	Instance Based Learning: Introduction, k-Nearest Neighbor learning							
3	Probabilistic Learning Bayesian Learning: Bayes Theorem and Concept Learning, Maximum Likelihood, Minimum Description Length Principle, Bayes Optimal Classifier, Gibbs Algorithm, Naïve Bayes Classifier, Bayesian Belief Network, EM Algorithm.	8						
4	Ensemble Learning and Random Forests: Voting Classifiers, Bagging and Pasting, Random Patches and Random Subspaces, Random Forests, Boosting, Stacking	8						
5	Unsupervised Learning Techniques	8						
	Clustering – Kmeans, DBSCAN, Other Clustering Algorithms, Gaussian Mixtures – Anomaly Detection, Selecting Clustering, Bayesian Gaussian Mixture Models, Other algorithms for anomaly and novelty detection							
	Reinforcement Learning: Markov Decision Process, Introduction, Learning Task, Q Learning							

Presc	Prescribed Text Book								
Sl.	Book Title	Authors	Edition	Publisher	Year				
No.									
1.	Machine Learning	Tom M.	First	McGraw Hill	2013				
		Mitchell		Education					
2	Hands-On Machine Learning with Scikit-	Aurelien	Second	O'Reilly	2020				
	Learn, Keras & TensorFlow	Geron							

Referen	Reference Text Book								
Sl. No.	Book Title	Authors	Edition	Publisher	Year				
1.	Introduction to	Andreas C Muller &	First	Shroff	2019				
	Machine Learning	Sarah Guido		Publishers					
	with Python								
2.	Thoughtful Machine	Mathew Kirk	First	Shroff	2019				
	learning			Publishers					

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

E-Bo	E-Book								
Sl. No.	Book Title	Authors	Edition	Publisher	Year	URL			
1.	The Elements of Statistical Learning	Trevor Hastie, Robert Tibshirani, Jerome H. Friedman	Second	-	2009	https://web.stanford.edu/~hastie/ Papers/ESLII.pdf			
2.	Machine Learning in Action	Peter Harrington	First	Manning	2017	http://www2.ift.ulaval.ca/~chaib/ IFT-4102- 7025/public html/Fichiers/Machi ne_Learning_in_Action.pdf			

MOO	MOOC Course							
Sl. No.	Course name	Course Offered By	Year	URL				
1.	Machine Learning	Coursera		https://www.coursera.org/learn/machine-				
				learning				
2.	Introduction to Machine	NPTEL	2016	https://swayam.gov.in/nd_noc20_cs29/preview				
	learning							

Course Outcomes

At the end of the course the student will be able to

CO1	Apply different learning algorithms for various complex problems
CO2	Analyze the learning techniques for given dataset
CO3	Design a model using machine learning to solve a problem.
CO4	Ability to conduct practical experiments to solve problems using appropriate machine
CO4	learning techniques.
CO5	Develop and demonstrate a solution for a specified ML Problem.

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3												3	
CO2		2										3		
CO3			3									3		
CO4				3	3									3
CO5				3	3	2		2	2					3

Proposed Assessment Plan (for 50 marks of CIE)

Tool	No. of Assessments	Marks
Internals	2	25
QUIZ/AAT	1	5
Lab Component	CIE + 2 Lab Tests	25
Т	otal	50

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Lab Program	Unit#	Program Details
1	1	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.
2	2	Develop a program to construct Support Vector Machine considering a Sample Dataset
3	2	Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions
4	3	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets
5	3	Write a program to construct a Bayesian network considering training data. Use this model to make predictions.
6	3	Apply EM algorithm to cluster a set of data stored in a .CSV file. Compare the results of k-Means algorithm and EM algorithm.
7	4	Implement Boosting ensemble method on a given dataset.
8	4	Write a program to construct random forest for a sample training data. Display model accuracy using various metrics
9	5	Implement tic tac toe using reinforcement learning
10	5	Consider a sample application. Deploy machine learning model as a web service and make them available for the users to predict a given instance.

SEE Exam Question paper format - 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Semester	IV							
Course Title:	Design and Analysi	Design and Analysis of Algorithms						
Course Code:	23DC4PCDAA	Total Contact Hours: 40 hours						
L-T-P:	3-0-1	Total Credits: 4						

Unit No.	Topics	Hours
1	Introduction to Algorithm, Fundamentals of Algorithmic Problem Solving.	8
	Analysis of Algorithm Efficiency: The Analysis Framework, Asymptotic Notations and Basic Efficiency Classes, Mathematical Analysis of Non Recursive Algorithm, Mathematical Analysis of Recursive Algorithms.	
2	Brute-Force: String Matching, Exhaustive Search: TSP, Knapsack Problem, Assignment Problem, Depth-First Search and Breadth-FirstSearch.	8
	Decrease-and-Conquer: Topological Sorting, Algorithms for Generating Combinatorial Objects: Generating Permutations, Decrease by-a-Constant-Factor Algorithms: Binary Search, Russian Peasant Multiplication, Variable Size-Decrease Algorithms: Computing Median and the Selection Problem	
3	Divide-and-Conquer: Merge sort, Quicksort, Multiplication of Large Integers and Strassen's Matrix Multiplication.	8
	Transform-and-Conquer: Presorting, Heaps and Heap sort, Horner's Rule.	
	Space and Time Tradeoffs: Horspool Algorithm, Boyer-Moore Algorithm.	
4	Dynamic Programming: Coin Problem, The Knapsack Problem, Warshall's and Floyd's Algorithms.	8
	Greedy Technique: Prim's Algorithm, Kruskal's Algorithm-Without disjoint subsets and Union Find algorithms, Dijkstra's Algorithm, Huffman Trees.	
5	Backtracking: n-Queens Problem, Subset-Sum Problem.	8
	Branch-and-Bound: Knapsack Problem, Traveling Salesman Problem.	
	NP-Completeness: Polynomial time, Polynomial-time verification, NP-completeness and reducibility. NP-Complete Problems: The Clique problem, The Vertex Cover problem, Approximation Algorithms: The Vertex-Cover problem.	

Pres	Prescribed Text Book											
Sl. No.	Book Title	Authors	Edition	Publisher	Year							
110.												
1.	Introduction to the Design	Anany Levitin	Third	Pearson	2014							
	and Analysis of Algorithms		Edition									
2.	Introduction to Algorithms	Thomas H Cormen,	Third	The MIT	2009							
		Charles E Leiserson, Ronald	Edition	Press								
		L Rivest, Clifford Stein	25111011	11000								

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Reference Text Book											
Sl.	Book Title	Authors	Edition	Publisher	Year						
No.											
1.	Fundamentals of	Ellis Horowitz,Satraj	2ndEdition	University	2009						
	Computer	Sahni and Rajasekhara m		Press Pvt. Ltd,							
	Algorithms	_									
2.	Analysis and design of	Padma Reddy		Sri Nandi	2009						
	Algorithms			Publications							

E-Bo	oks					
Sl. No.	Book Title	Authors	Edition	Publisher	Year	URL
1.	Introduction to Design & Analysis of Algorithms	K. Raghava Rao	-	Smash words	2013	https://www.smashw ords.com/books/view /365630
2.	Data structures and Algorithm Analysis in C++	Allen Weiss	Fourth edition	Pearson education	2014	http://www.uoitc.edu. iq/images/documents/ informatics- institute/Competitive exam/DataStructure s.pdf

MOO	MOOC Courses											
Sl. No.	Course name	Course Offered By	Year	URL								
1	Algorithms	Coursera	2023	https://www.coursera.org/course/algs4partI								
2	Design and Analysis of Algorithms	NPTEL	2023	https://onlinecourses.nptel.ac.in/noc19_cs4 7/preview								

Course Outcomes

At the end of the course the student will be able to

CO1	Apply algorithmic design paradigms to basic computing problems.
CO2	Analyze the time complexity of different algorithms.
CO3	Design efficient algorithms using appropriate algorithm design techniques.
CO4	Conduct experiments to implement algorithms and provide valid conclusions.

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3												2	
CO2		3												
CO3			3									2		
CO4				3	2									3

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks
Internals	2	20
QUIZ/AAT	1	5
Lab Component	CIE+ Two Lab Tests	25
	Total	50

Laboratory Plan

Instructions to Students to be followed in each lab:

- 1. Each Student should write down the program in the observation book and get it evaluated by the respective lab faculty in-charge and then execute the program.
- 2. Each Student should bring the lab record with the programs and output written for the programs completed in their respective previous week and get it evaluated by the lab faculty in-charge. In the record book students should Handwrite the Program Pasting of the printout of the Output or Handwriting of the Output (Output should be written for all the cases).
- 3. Students have to practice following list of programs and additional programming exercises will also be given in lab. Students will be made to solve coding challenges on platforms like LeetCode and HackerRank.

Lab Program	Unit#	Program Details
		Write program to do the following:
1	2	a. Print all the nodes reachable from a given starting node in a digraph using BFS method.
		b. Check whether a given graph is connected or not using DFS method.
2	2	Write program to obtain the Topological ordering of vertices in a given digraph.
3	2	Implement Johnson Trotter algorithm to generate permutations
4	3	Sort a given set of N integer elements using Merge Sort technique and compute its time taken. Run the program for different values of N and analyze its time complexity.
5	3	Sort a given set of N integer elements using Quick Sort technique and compute its time complexity.
6	3	Sort a given set of N integer elements using Heap Sort technique and analyze its time complexity.
7	4	Implement 0/1 Knapsack problem using dynamic programming.
8	4	Implement All Pair Shortest paths problem using Floyd's algorithm.
9	4	Find Minimum Cost Spanning Tree of a given undirected graph using Prim/Kruskal's algorithm.

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

10	4	From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.
11	5	Implement "N-Queens Problem" using Backtracking.

SEE Question paper format - 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Sem	IV		
Course Title:	Data Visualization using Tool	ls	
Course Code:	23DS4AEDVZ	Total Contact Hours: 20	hours
L-T-P:	0-0-1	Total Credits:	1

About the course: The course is designed to enhance programming and computation skills of students by exploring various features and extensive libraries of python programming language that are necessary for data science applications.

The students should work with a given dataset and create effective visualizations. The course will be executed in two cycles.

During Cycle 1, the students would be able to implement the key visualization techniques using Python tools like Matplotlib, Seaborn etc.

In Cycle 2, students will be exposed to industry-standard software tools like Tableau, Google Data Studio etc. to create compelling and interactive visualization of various types of data.

Prescr	Prescribed Text Book									
Sl. No.	Book Title	Authors	Edition	Publisher	Year					
1.	Python Data Science Handbook	Jake Vander Plas	Second Edition	O'Reilly	2017					
2.	Pro Tableau: A Step by Step Guide	Seema Acharya , Subhashini Chellappan	Second Edition	Apress	2016					
Refere	Reference Text Book									
Sl. No.	Book Title	Authors	Edition	Publisher	Year					
1.	Data Analysis and Visualization Using Python: Analyze Data to Create Visualizations for BI Systems,	Sossama Embarak		Apress	2018					
2.	Python Data Visualization Cookbook	Igor Milovanović, Dimitry Foures, Giuseppe Vettigl	Second Edition	O'Reilly	2015					

E-Bo	E-Book								
Sl. No.	Book Title	Aut hors	Edit ion	Publisher	Year	URL			
1.	Data Visualization with Python and JavaScript	Kyra n Dale	-	O'Reilly	2016	https://github.com/jllovet/dataviz-with-py-and-js			
2.	Jumpstart Tableau: A Step-by-Step Guide to Better Data	Arsh ad Kha	-	Apress	2016	https://link.springer.com/b ook/10.1007/978-1-4842- 1934-8			

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Visualiza	tion	n		

МО	MOOC Course								
Sl. No	Course name	Course Offered By	Year	URL					
1.	IBM Data Science	Coursera	2023	https://www.coursera.org/professional- certificates/ibm-data-science					
2.	Data Visualization with Tableau	Coursera	2023	https://www.coursera.org/specializations/d ata-visualization					

Laboratory Plan (if applicable)

Lab-cycle-1

- 1. Using the sales_data.csv, create the visualization report for the following using Matplotlib:
 - a. Get total profit of all months and show line plot with the following Style properties

Generated line plot must include following Style properties: –

- · Line Style dotted and Line-color should be green
- · Show annotation
- · Add a square marker.
- · Add ticks for both X and Y axis
- b. Read Bathing soap facewash of all months and display it using the Subplot
- 2. Using the sales_data.csv, create the visualization report for the following using Matplotlib:
 - a. Get total profit of all months and show line plot with the following Style properties

Generated line plot must include following Style properties: –

- · Line Style dashed and Line-color should be green
- · Show legend at the lower right location

Add ticks for both X and Y axis

- · Line width should be 2
- b. Read toothpaste sales data of each month and show it using a bar plot
- 3. Using the sales data.csv, create the visualization report for the following using Matplotlib:
 - a. Calculate total sale data for last year for each product and show it using a Pie chart
 - · Print the total sale inside each part
 - · Explode the highest sale
 - · Set the start angle=60

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

- b. Read face cream and facewash product sales data and show it using the horizontal bar chart
- 4. Write a Python programming for the following:
 - a. to display a horizontal bar chart of the sale of book. Use different color for each bar.

Sample data:

Programming languages: Fict, Tech, Moti, Business, Nutri, Dev

Sale: 5.2,19.6, 8.7, 8, 7.7, 3.7

- Add ticks for both axis
- · Show legend at the upper right corner
- b. Write a Python program to create a stacked bar plot.

Note: Use bottom to stack the women bars on top of the men bars.

Sample Data:

Means (men) = (22, 30, 35, 35, 26)

Means (women) = (25, 32, 30, 35, 29)

- Add labels and ticks
- Use annotation
- 5. Write a Python programming for the following:
 - a. To create a pie chart with a title of the pass percentage of subjects.

Sample data:

Subjects: DSC, OOP, OPS, COA, MAT, Java

Pass percentage (%): 40, 25.6, 8.8, 30, 7.7, 60.7

- · Print percentage inside the chart
- · Use explode property
- b. Using the sales_data.csv, read the total profit of each month and show it using the histogram to see the most common profit ranges
- 6. Using the dataset planets.csv, create the visualization report for the following using Seaborn:
 - a. Get the distance covered year-wise and show scatter plot with the following properties
 - · Add "mass" as additional features

Autonomous Institute, Affiliated to VTU

DEPART

- · Use different markers
- · Control the range of marker areas with sizes
- b. Read the orbital_period of each year and show it using the histogram.
- 7. Using the dataset planets.csv, create the visualization report for the following using Seaborn:
 - a. Get the distance covered year-wise and show scatter plot with the following properties
 - · Add "mass" and "method" as additional features
 - · Change the default color palette
 - · Display the complete legend
 - b. Read the distance for each method and show it using the bar chart.
- 8. Using the dataset titanic.csv, create the visualization report for the following using Seaborn:
 - a. Demonstrate the use of "displot"
 - b. Plot the distribution using Kernel density estimation.
 - c. Use lineplot for any two suitable features
 - d. Generate scatter plot with different color palette
- 9. Using the dataset titanic.csv, create the visualization report for the following using Seaborn:
 - a. Demonstrate the subplots (2x1) on scatter plots
 - b. Demonstrate the use of violin plot
 - c. Get different line plots for survival of passengers class wise.
 - d. Create visualization for strip plot without jitter
- 10. Using the dataset titanic.csv, create the visualization report for the following using Seaborn:
 - a. Create a visualization using categorical plot and re-order the axis contents
 - b. Demonstrate the use of violin plot
 - c. Demonstrate the subplots (1x3) on line plots
 - d. Generate scatter plot with different color palette

Lab-cycle-2

- I. Create the visualization using Tableau for the "Corriander seed 2021.csv" dataset.
 - a. Demonstrate the use of filters (General, wildcard, condition and limits)
 - b. Demonstrate the group creation, removing and renaming a group.
 - c. Demonstrate the creation of constant set

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

- d. Create the visualization by using quick table calculation
- e. Customize the data using any three number functions
- II. Create the visualization using Tableau for the "Corriander_seed_2021.csv" dataset.
 - a. Demonstrate the use of cascading filter, calculation filter and data source filter.
 - b. Demonstrate creating Hierarchies
 - c. Demonstrate the creation of computed sets
 - d. Create a visualization using a calculated field
 - e. Customize the data using any three string functions
 - III. Create the visualization using Tableau for the "Corriander_seed_2021.csv" dataset.
 - a. Demonstrate the use of cascading filter, calculation filter and data source filter.
 - b. Demonstrate the group creation, removing and renaming a group.
 - c. Create a visualization using a calculated field
 - d. Customize the data using any three number functions
 - e. Demonstrate the creation of constant set
 - IV. Create the visualization using Tableau for the "supermarket sales.csv" dataset.
 - a. Demonstrate the use of filters (General, wildcard, condition and limits)
 - b. Demonstrate the group creation, removing and renaming a group.
 - c. Demonstrate the creation of constant set
 - d. Create a visualization using a calculated field
 - e. Customize the data using any three string functions
 - V. Create the visualization using Tableau for the "supermarket sales.csv" dataset.
 - a. Demonstrate the use of cascading filter, calculation filter and data source filter.
 - b. Demonstrate creating Hierarchies
 - c. Demonstrate the creation of computed sets
 - d. Create the visualization by using quick table calculation
 - e. Customize the data using any three number function
 - VI. Create the visualization using Tableau for the "supermarket sales.csv" dataset.
 - a. Demonstrate the use of filters (General, wildcard, condition and limits)
 - b. Demonstrate creating Hierarchies
 - c. Create the visualization by using quick table calculation

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

- d. Demonstrate the creation of constant set
- e. Customize the data using any three string functions
- VII. Create the visualization using Tableau for the "supermarket_sales.csv" dataset.
 - a. Demonstrate the use of cascading filter, calculation filter and data source filter.
 - b. Demonstrate the group creation, removing and renaming a group.
 - c. Demonstrate the creation of constant set
 - d. Create a visualization using a calculated field
 - e. Customize the data using any three number functions

Course Outcomes

At the end of the course the student will be able to

CO1	Apply data transformations such as Joins, filtering, sorting, aggregation etc., for visualization using industry-standard software tools.
CO2	Analyze Data Visualization models for various domains.
CO3	Design and create effective data visualizations using Python for given problem

CO-PO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2				3	1		1	1		1		3	
CO2		2			3	1		1	1		1	3		
CO3			2		3	1		1	1		1			3

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks
Internals	-	-
QUIZ/AAT	-	-
Lab Component	-	50
To	50	

SEE Exam (50 Marks)

Students execute programs on Data Visualization using Python and Tableau in the presence of External and Internal examiners.

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

Course Code	23MA4AEUHV	Course Name	Universal Human Values
Credits	01	L-T-P	0-1-0
Total Number of ho	urs		15

Course Objectives:

To develop a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence. Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence.

UNIT - 1

Module 1: Course Introduction - Need, Basic Guidelines, Content and Process for Value Education

- 1. Purpose and motivation for the course, recapitulation from Universal Human Values-I
- 2. Self-Exploration—what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration
- 3. Continuous Happiness and Prosperity- A look at basic Human Aspirations
- 4. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority
- 5. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- 6. Method to fulfil the above human aspirations: understanding and living in harmony at various levels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking

UNIT - 2

Understanding Harmony in the Human Being - Harmony in Myself!

- 1. Understanding human being as a co-existence of the sentient 'I' and the material 'Body'
- 2. Understanding the needs of Self ('I') and 'Body' happiness and physical facility
- 3. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer)
- 4. Understanding the characteristics and activities of 'I' and harmony in 'I'
- 5. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail
- 6. Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF ARTIFICIAL INTELLIGENCE & DATA SCIENCE

UNIT - 3

Understanding Harmony in the Family and Society- Harmony in Human- Human Relationship

- 1. Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship
- 2. Understanding the meaning of Trust; Difference between intention and competence
- 3. Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship
- 4. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- 5. Visualizing a universal harmonious order in society- Undivided Society, Universal Order-from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

UNIT - 4

Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- 1. Understanding the harmony in the Nature
- 2. Holistic perception of harmony at all levels of existence.

UNIT – 5

Implications of the above Holistic Understanding of Harmony on Professional Ethics

- 1. Natural acceptance of human values
- 2. Definitiveness of Ethical Human Conduct

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. To discuss the conduct as an engineer or scientist etc.

At the end of the course, the student will have the able to

CO1	Conduct self-exploration and distinguish between values and skills, happiness and accumulation of physical facilities, the self and the body, Intension and Competence of an individual
CO2	Analyze the value of harmonious relationship based on trust and respect in personal and professional life
CO3	Examine the role of a human being in ensuring harmony in society and nature
CO4	Apply the understanding of ethics in life and profession

TEXT BOOKS:

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

REFERENCE MATERIAL:

- 1. Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks
Internals	-	-
QUIZ/AAT	-	-
Lab Component	-	50
Tot	50	

DEPARTMENT OF Artificial Intelligence & Data Science

V Semester

No.	Course Type	Code	Course Title	Credi	ts		Total Credits	Total Hours
	JI			L	Т	P		
1	PC	23DS5PCTSA	Time Series Analysis	2	1	0	3	4
2	PC	23DS5PCBDA	Big Data Analytics	3	0	1	4	5
3	PC	23DS5PCDLG	Deep Learning	4	0	1	5	5
4	PC	23DS5PCPWR	Programming with R	0	0	1	1	2
5	AE	23DC5AERMI	Research Methodologies & IPR	3	0	0	3	3
6	PE	23AI5PEOTM	Optimization Techniques for Machine Learning	3	3 0 0		0 3	3
		23DS5PEIOT	Internet of Things					
		23DS5PECNS	Cryptography & Network Security					
		23DS5PERAI	Responsible AI					
7	PW	23AI5PWSNA	Mini Project – Social Network Analytics	0	0	2	2	4
8	HS	23DC5HSEVS	Environmental Studies	1	0	0	1	1
9	NCMC	23NCMC3NS1	NSS	0 0		0	0	1
		23NCMC3YG1	YOGA					
		23NCMC3PE1	Physical Edu. (Sports and Athletics)					
		TO	TAL				22	29

PC-13, PE-3, PW-2, AE-3, HS-1

DEPARTMENT OF Artificial Intelligence & Data Science

Sem	V					
Course Title:	Time Series Analysis					
Course Code:	23DS5PCTSA	Total Contact Hours: 40 hours				
L-T-P:	2-1-0	Total Credits:	3			

Unit No.	Topics	Hour s
1	Time Series Data: Purpose, Time series: Plots, Trends, and seasonal variation, Decomposition of series, Characteristics of Time Series: Introduction, Examples, Objectives and its nature, Introduction to time series databases and applications, Measures of dependence, Stationary Time Series, Estimation of Correlation, VectorValued and Multi Dimensional Series Components of Time Series: Trends, Seasonality, Cycles, Noise, Mathematical Models: Additive and Multiplicative models. Resolving components of a Time Series - Measuring Trend: Graphic, Semi-Averages, Moving Average and Least Squares Methods.	8
2	Correlation: Expectation and the ensemble, correlogram, covariance of sum of random variables, Measuring Seasonal Variation: Method of Simple Averages, Ratio-to-Trend Method, Ratio-to-Moving Average Method and Link Relative Method, Cyclical and Random Fluctuations, Variate Difference Method.	8
3	Index Numbers and their Definitions: Construction and Uses of Fixed and Chain based Index Numbers, Simple and Weighted Index Numbers, Laspeyres, Paasche's, Fisher's, and Marshall - Edgeworth Index Numbers, Optimum Tests for Index Numbers, Cost of Living Index Numbers. Forecasting Strategies: Leading variables and associated variables, Bass Model, Exponential Smoothing and Holt-Winters method	8
4	Basic Stochastic Models: White Noise, Random Walks, Fitted models & diagnostic plots, Autoregressive models: stationary and non-stationary Autoregressive process Time series Regression and Exploratory Data Analysis: Classical Regression, Exploratory Data Analysis, generalized least square method, linear models with seasonal variables, Harmonic seasonal models, logarithmic transforms.	8

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

Linear Models: Moving Average models, Fitted MA Models, ARIMA Models:

Autoregressive Moving Average Models, Differential Equations, Autocorrelation and Partial Correlation, Forecasting & Estimation, Non-stationary Models: Building non-seasonal ARIMA Models, ARCH Models, GARCH Models.

Presci	ribed Text Book				
Sl. No.	Book Title	Authors	Edition	Publisher	Year
1.	Introductory Time series with R	Paul S.P. Cowpertwait, Andrew V. Metcalfe	1st Edition	Springer	2010
2.	Time Series Analysis and its Applications with R Examples	Robert H Shumway, David S Stoffer	4th Edition	O'Reilly	2020
Refer	ence Text Book		I .		
Sl. No.	Book Title	Authors	Edition	Publisher	Year
1.	Introduction to Time Series and Forecasting	Peter J Brokewell, Richard A Davis	Third	Springer	2016
2.	The Analysis of Time Series – An Introduction	Chris Chatfield	First	Chapman & Hall / CRC	1996

E-bo	E-book										
SI No	Book Title	Authors	Edition	Publish er	Year	URL					
1	Time Series Analysis: Univariate and Multivariate methods	William W. S Wei	2nd Edition	Pearson	2007	https://civil.colorado.edu/~balaj ir/CVEN6833/lectures/wwts- book.pdf					
2	Time Series Analysis: Forecasting and	Georgee.P.Box Gwilymm.Jenk ins	5th Edition	Wiley	2017	http://repo.darmajaya.ac.id/478 1/1/Time%20Series%20Analys is_%20Forecasting%20and%20					

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

Control	Gregoryc.Rein		Control%20%28%20PDFDrive
	sel		%20%29.pdf
	Gretam.Ljung		

MOO	MOOC Course										
Sl. No.	Course name	Course Offered By	Year	URL							
1.	Intro to Time Series Analysis in R	Coursera	2024	https://www.coursera.org/projects/intro-time- series-analysis-in-r							
2.	Applied Time- Series Analysis	SWAYAM	2024	https://onlinecourses.nptel.ac.in/noc21_ch28/p review							
3	Time Series Analysis in R	DataCamp	2024	https://www.datacamp.com/courses/time- series-analysis-in-r							

Course Outcomes

At the end of the course the student will be able to

CO1	Analyze and interpret time series data by identifying key components such as trends, seasonal variations, and stationarity.
CO2	Apply advanced statistical techniques to decompose time series data and implement effective forecasting methods.
CO3	Develop and evaluate time series models, including ARIMA and GARCH, to make accurate predictions and informed decisions.
CO4	Implement time series models using programming tools like R / Python, conducting experiments to preprocess, visualize and forecast data.

CO-PO-PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3		2	2								3	
CO2	3	2		2	2							3		
CO3		3		3	2									3
CO4			3		2					2	1			3

SEE Exam Question paper format – 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

DEPARTMENT OF Artificial Intelligence & Data Science

Sem	V		
Course Title:	Big Data Analytics		
Course Code:	23DS5PCBDA	Total Contact Ho	urs: 40 hours
L-T-P:	3-0-1	Total Credits:	4

Unit	Topics	Hou
No.	-	rs
1	Introduction to Big Data Analytics: Introduction - Need of Big Data, Types of Digital Data, Definition of Big Data Analytics, Data intensive scientific discovery and the role of Big Data, Phases in Analytics, Characteristics of Big Data.	8
	Data.	
	Designing Data Architecture: Managing Data for Analysis, Architecture reference model, Big Data Stack, Case Study on Business Analytics for Emerging Trends and Future Impacts, Big Data Analytics standards - Process	
	management framework for big data analytics- ISO/IEC 24668:2022	
2	NoSQL: Data Store and Characteristic features, CAP theorem, NoSQL Data Architecture Patterns, Shared- Nothing Architecture for Big Data Tasks, MongoDB Databases - Features, Querying commands	8
	Apache Cassandra: Features and Components of Cassandra, Data types, Cassandra Data Model, CQL commands, Keyspaces, CRUD Operations, Time to Live (TTL), Alter Commands, Import and Export	
3	Introduction to Hadoop: Introduction, Hadoop and its Ecosystem – Zookeeper, Ozie, Sqoop and Flume	8
	MapReduce Framework and Programming Model: Anatomy of MapReduce Job Run, Shuffle and Sort Map Tasks, MapReduce Execution Apache Yarn - How Yarn runs an application, Scheduling in Yarn, Scheduler options.	
4	The Hadoop Distributed File System: The design of HDFS, HDFS Concepts, Hadoop File Systems and Interface, Dataflow - Anatomy of a File read and write	8
	Essential Hadoop Tools, Using Sqoop, Flume, Oozie, HBase.	
5	Spark and Big Data Analytics: Spark basic architecture, Overview of structured spark types, Structured API Execution Components, Data Frame Transformation	8
	Spark works with different types of data : Boolean , numbers , JSON , Dates and Timestamp. Spark SQL - Tables, Views, Databases	

Preso	Prescribed Text Book											
Sl.	Book Title	Edition	Publisher	Year								
No.												
1.	Big Data Science &	Arshdeep Bahga, Vijay	First	ISBN: 978-1-	2019							
	Analytics – A	Madisetti		949978-00-1								
	Hands-on Approach											

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

2	Hadoop - The	Tom White	Fourth	O'Reilly	2015
	definitive Guide				
3	Spark: The	Bill Chambers and Matei	First	O'Reilly	2018
	Definitive Guide -	Zaharia			
	Big Data Processing				
	made Simple				
	1				

Refe	Reference Text Book											
Sl. No.	Book Title	Authors	Edition	Publisher	Year							
1.	Big Data Analytics	Rajkamal, Preeti Saxena	First	McGraw Hill Education	2019							
2.	Business Intelligence, A managerial Perspective on Analytics	Sharda, R, Delen D, Turban E	Tenth	Pearson	2015							

MOC	MOOC Course										
Sl. No.	Course name	Course Offered By	Year	URL							
1.	Hadoop Starter Kit	Udemy		Free Hadoop Tutorial - Hadoop Starter Kit Udemy, 2023							
2.	NPTEL IIT Patna 2023 https://nptel.ac.in/courses/1 0610418	NPTEL	2023	https://nptel.ac.in/courses/10610418 9, 2023							

Course Outcomes

At the end of the course the student will be able to

CO1	Apply the concepts of NoSQL, Hadoop, Spark to big data patterns
CO2	Analyze data analytic techniques for big data enabling technologies
CO3	Design solutions using Hadoop and spark for big data case studies
CO4	Conduct experiments using big data problems using NoSQL, Hadoop, Spark frameworks
CO5	Investigate complex queries using big data frameworks

CO-PO-PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3													3	
CO2		3											3		
CO3			3		3										3
CO4				3	3										3
CO5				3	3				3	2		3			3

B.M.S. COLLEGE OF ENGINEERING, BENGALURU-19 Autonomous Institute, Affiliated to VTU DEPARTMENT OF Artificial Intelligence & Data Science

SEE Exam Question paper format – 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

DEPARTMENT OF Artificial Intelligence & Data Science

Sem	V				
Course Title:	Deep Learning				
Course Code:	23DS5PCDLG	Total Contact Hours: 50 hours			
L-T-P:	4-0-1	Total Credits:	5		

Unit No.	Topics	Hrs
1	Introduction to Artificial Neural Networks: From Biological to Artificial Neurons: Biological Neurons, Logical Computations with Neurons, The Perceptron, The Multilayer Perceptron and Backpropagation, Regression and Classification MLPs, Implementing MLPs with Keras, Fine-tuning Neural Network Parameters Introduction to Deep Learning: Challenges motivating Deep Learning, Historical Trends in Deep Learning, Deep Feedforward Networks, Gradient-based Learning, and Efficient Computation.	10
2	Convolution Neural Networks(CNN): The Architecture of the Visual Cortex, Convolutional Layer, Pooling Layer, CNN Architectures- LeNet-5, AlexNet, GoogLeNet, VGGNet, ResNet, Xception, Pre-trained Models for Transfer Learning, Classification and Localization, Object Detection-Fully Convolutional Networks (FCNs), You Only Look Once (YOLO), Semantic Segmentation, Convolution Networks and the History of Deep Learning.	10
3	Training Deep Neural Networks: Vanishing/Exploding Gradients, Reusing Pretrained Layers, Faster Optimizers, Avoiding Overfitting Through Regularization. Recurrent Neural Networks(RNN): Recurrent Neurons and Layers, Training RNNs, Forecasting a Time Series, Handling Long Sequences-LSTM, GRU, Bidirectional RNNs, Recursive Neural Networks, Attention Mechanisms.	10
4	Representation Learning using Autoencoders: Stacked Autoencoders, Convolutional Autoencoders, Recurrent Autoencoders, Denoising Autoencoders, Sparse Autoencoders, Applications of Autoencoders, Transfer Learning, and Domain Adaptation. Generative Adversarial Networks(GANs): Difficulties of training GANs, Deep Convolutional GANs, Progressive Growing of GANs, StyleGANs	10
5	Deep Generative Models: Boltzmann Machines, Restricted Boltzmann Machines, Deep Belief Networks, Deep Boltzmann Machines, Boltzmann Machines for Real-Valued Data	10

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

Applications: Large-Scale Deep Learning, Computer Vision, Speech Recognition, Natural Language Processing, Other Applications.

	ribed Text Book		T	1	ı
Sl. No.	Book Title	Authors	Edition	Publisher	Year
1.	Deep Learning	Ian Goodfellow,Yoshua Bengio, Aaron Courville		MIT Press	2016
2.	Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow	Aurelien Geron	Second	O'Reilly	2020
Refere	ence Text Book		•		•
Sl. No.	Book Title	Authors	Edition	Publisher	Year
1.	Deep Learning with Tensor Flow and Keras 3rd Edition	Amita Kapoor, Antonio Gulli, Sujit Pal	Third	Packt	2022
2.	Learning Deep Learning: Theory and Practice of Neural Networks, Computer Vision, NLP, and Transformers using TensorFlow	Magnus Ekman	First	Addison-Wesley Professional	2021

E-Be	ook					
Sl.	Book	Authors	Editi	Publisher	Year	URL
No	Title		on			
•						
1.	Dive into	Aston Zhang,	First	Cambrid	2023	https://d21.ai/d21-en.pdf
	Deep	Zachary		ge		
	Learning	C.Lipton, Mu		Universit		
		Li, Alexander J.		y Press		
		Smola				
2.	The Little	François Fleuret	-	Universit	2024	https://fleuret.org/public/lb
	Book of			y of		dl.pdf
				Geneva,		

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

Deep		Switzerla		
Learning		nd		

MOOC (MOOC Course								
Sl. No.	Course name	Course Offered By	Year	URL					
1.	Deep learning – IIT Ropar	SWAYA M	2024	https://onlinecourses.nptel.ac.in/noc24_cs114/pr eview					
2.	Neural Networks and Deep Learning	Coursera	2024	https://www.coursera.org/learn/neural-networks-deep-learning?specialization=deep-learning					

Laboratory Plan

Sl. No.	Lab Program
1	Write a program to implement XOR gates using Perceptron.
2	Design a deep NN, optimize the network with Gradient Descent, and optimize the same with Stochastic gradient descent(SGD).
3	Classification of MNIST Dataset using CNN.
4	Implement Region-Based CNN for object detection.
5	Implement RNN for handwriting digit recognition.
6	Implement Bidirectional RNNs for music generation.
7	Implement Bidirectional LSTM for sentiment analysis.
8	Implement Variational Autoencoders for image-denoising.
9	Implementation of a Restricted Boltzmann Machine (RBM) that demonstrates stacking.
10	Implement Generative Adversarial Networks to generate realistic photographs.

Course Outcomes

At the end of the course, the student will be able to

CO1	Apply the fundamentals of deep learning algorithms for various complex problems
CO2	Analyze deep learning models to optimize it's performance for prediction.
CO3	Design models using deep learning to solve real-world problems and present solutions in a team.
CO4	Conduct practical experiments and implement Deep Learning Models for Applications
CO5	Propose solutions using Deep Learning models for real-world text and image datasets.

CO-PO-PSO mapping

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3												3	
CO2		2										3		
CO3			3			2			2	2				3
CO4				2	2									3
CO5				3	3	2	2				3			3

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks		
Internals	Best of 2	20		
Lab Test + Project	1	25		
QUIZ/AAT	1	5		
Tota	Total			

SEE Exam Question paper format – 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

DEPARTMENT OF Artificial Intelligence & Data Science

Sem	V	
Course Title:	Programming With R	
Course Code:	23DS5PCPWR	Total Contact Hours: 24 hours
L-T-P:	0-0-1	Total Credits:

Module 1

SI no	Lab Program	No. of Hours
1	Introduction to R and RStudio: Install R and RStudio. Write and execute your first R script that includes basic arithmetic operations, variable assignments, and printing results. Document the steps to install R and RStudio and describe the purpose of each line of your script.	1
2	Basic Data Types and Operations: Design an R program to create and manipulate vectors, matrices, lists, and data frames. Include operations such as indexing, subsetting, and applying functions like sum(), mean(), and length(). Create a data frame from scratch, perform basic operations, and describe the structure and type of each element in the data frame.	
3	Basic Statistical Operations : Design an R program to calculate mean, median, mode, standard deviation, and variance of a dataset. Use a sample dataset, calculate each statistical measure, and provide a detailed explanation of what each measure represents and how it can be interpreted in the context of the data.	1
4	Data Import and Export: Design an R program to import data from a CSV file, perform some basic cleaning (such as removing NA values), and export the cleaned data to a new CSV file. Include steps to check the structure of the imported data, summarize its contents, and verify the successful export of the cleaned data.	1
5	Basic Data Visualization: Design an R program to create simple plots including a histogram, bar plot, line plot, and scatter plot. Use a given dataset, generate each plot, customize the plots with titles, axis labels, and colors, and save the plots as image files. Provide a brief interpretation of each plot in the context of the data.	

Module 2

SI no	Lab Program	No. of Hours
----------	-------------	-----------------

DEPARTMENT OF Artificial Intelligence & Data Science

	Data Cleaning and Preparation: Design an R program to handle missing data,	
	filter rows based on certain conditions, and select specific columns from a dataset.	
1	Use a sample dataset with missing values, filter the data to include only relevant	1
	rows, and create a new dataset with selected columns. Document the cleaning	
	process and the rationale behind each step.	
	Advanced Data Manipulation using dplyr: Design an R program to use dplyr	
	functions to manipulate data frames. Include tasks such as selecting columns,	
2	filtering rows, creating new columns with mutate, summarizing data with	1
	summarize, and arranging rows. Apply these operations to a complex dataset and	
	provide a detailed explanation of each operation and its outcome.	
	Data Visualization using ggplot2: Design an R program to create advanced plots	
3	using ggplot2. Include examples of faceting, customizing plot aesthetics, and	1
3	adding annotations. Use a dataset with multiple variables, generate plots that show	1
	different aspects of the data, and explain the insights gained from each plot.	
	Descriptive Statistics and Data Summary: Design an R program to generate	
	descriptive statistics and create a data summary report. Use a comprehensive	
4	dataset, calculate measures such as mean, median, range, quartiles, and create	1
	summary tables. Write a report that includes the calculated statistics and an	
	interpretation of the data distribution.	
	Basic Data Analysis: Design an R program to perform simple linear regression	
	analysis. Use a dataset with a clear dependent and independent variable, fit a linear	
5	model, plot the regression line, and interpret the results. Include diagnostic plots to	2
	check the assumptions of the linear model and provide a detailed analysis of the	
	findings.	

Module 3

SI no	Lab Program			
	Advanced Data Analysis: Design an R program to perform multiple linear			
1	regression analysis. Use a dataset with multiple predictor variables, fit a multiple	2		
	regression model, interpret the coefficients, and evaluate the model's performance.			

DEPARTMENT OF Artificial Intelligence & Data Science

	Include steps to check for multicollinearity, perform model selection, and validate				
	the model using cross-validation techniques.				
	Introduction to Machine Learning with R: Design an R program to implement				
	a basic k-means clustering algorithm. Use a dataset with multiple features,				
2	normalize the data, perform k-means clustering, visualize the clusters, and	3			
	interpret the results. Provide an analysis of the optimal number of clusters and				
	discuss the practical applications of clustering in data analysis.				
	Time Series Analysis: Design an R program to analyze and forecast time series				
	data using ARIMA models. Use a time series dataset, perform exploratory data				
	analysis, fit an ARIMA model, and make future forecasts. Include steps to check				
3	for stationarity, select model parameters, and evaluate the model's forecasting				
	euracy. Provide a detailed interpretation of the time series components and the				
	forecast results.				
	Creating Interactive Visualizations: Design an R program to create interactive				
	plots using the plotly package. Use a complex dataset, generate interactive				
4	visualizations such as scatter plots, line charts, and bar charts, and customize the	2			
	interactivity features. Include examples of how to incorporate tooltips, hover				
	effects, and interactive legends. Discuss the advantages of using interactive				
	visualizations for data exploration.				
	Data Reporting with RMarkdown: Design an R program to generate a				
	comprehensive report using RMarkdown. Include sections that combine code,				
_	text, and visualizations to create a dynamic and reproducible report. Use a case	2			
5	study to demonstrate the end-to-end data analysis process, from data cleaning and	2			
	manipulation to analysis and visualization. Provide the final RMarkdown				
	document and the rendered report, highlighting the key findings and insights.				

Prescribed Textbook									
SI No	Book Title	Authors	Edition	Publisher	Year				
1.	R for Data Science	Hadley Wickham &	First	O'Reilly Media, Inc	2017				

DEPARTMENT OF Artificial Intelligence & Data Science

		Garrett Grolemund			
2.	An Introduction to R	W. N. Venables, D. M. Smith and the R Core Team	First	R Core Team	2023

Reference Textbook							
SI No	Book Title	Authors	Edition Publisher		Year		
1	R in Action	Robert Kabacoff	2nd Edition	Manning	2015		
	The Art of R						
2	Programming	Norman Matloff	1st Edition	No Starch Press	2011		

E-book						
SI No	Book Title	Authors	Edition	Publisher	Year	URL
1	Hands-On Programming with R	Garrett Grolemund	1st Edition	O'Reilly	2014	https://rstudio- education.github.io/ho pr/index.html
2	R Graphics Cookbook	Winston Chang	2nd Edition	O'Reilly	2018	https://r-graphics.org/

MOOC Course					
SI No	Course Name	Offered By	Year	URL	
1	Data Science: Foundations using R	Coursera (Johns Hopkins University)	2023	https://www.coursera.org/speci alizations/jhu-data-science	
2	R Programming	Coursera (Johns Hopkins University)	2023	https://www.coursera.org/learn/r-programming	
3	Foundations of R	IIT Kanpur	2024	https://onlinecourses.nptel.ac.in /noc22_ma69/preview	

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

Course Outcomes

At the end of the course the student will be able to

CO1	Apply complex data analysis techniques, including machine learning, time series analysis, and generate dynamic interactive reports.
CO2	Formulate advanced data manipulation, cleaning techniques, and comprehensive data visualizations using R.
CO3	Develop proficiency in R programming to perform data manipulation and basic statistical analysis.

CO-PO-PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3								2	2			3	
CO2		3		3								3		
CO3				3	3									3

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks
Lab Internal	2	40
Project	1	10
Т	Total	50

SEE Exam (50 Marks)

Evaluation of Projects carried out by students, as assessed by an external examiner along with internal faculty.

Sem	V					
Course Title:	Research Methodolo	Research Methodologies and IPR				
Course Code:	23DC5AERMI	Total Hours: 40 hours				
L-T-P:	3-0-0	Total Credits: 3				

Unit No.	Topics	Hrs.
1	Research Methodology: An Introduction - Meaning of Research, Objectives of Research, Types of Research, Research Approaches, Significance of Research, Research methods vs Methodology, Research and scientific method, Research Process, Criteria of Good Research.	8
	Define the Research Problem - What is research problem, Selecting the problem, Necessity of Defining the problem, Technique involved in Defining a Problem	
	Research Design - Meaning of Research Design, Need for Research Design, Features of Good Design, Important concepts Relating to Research Design, Different Research Design	
2	Design of Sample Surveys - Introduction, Sample Design, Sampling and Non-Sampling Errors, Sample Survey vs Census Survey, Types of Sampling Designs Chi-Square Tests - Test of Difference of more than Two proportions,	8
	Test of Independence of Attributes, Test of Goodness of Fit Analysis of Variance - The ANOVA technique, The Basic principle of ANOVA, One way ANOVA, Two way ANOVA, Latin-square Design.	
3	Nature of Intellectual property, IPRs- Invention and Creativity - Importance and Protection of Intellectual Property Rights (IPRs) – procedure for grant of patents and patenting under PCT-types of patents-technological research and innovation- international cooperation on IP.	8
4	A brief summary of Patents-Copyrights-Trademarks, patent rights-licensing and transfer of technology-patent databases-case studies on IPR-Geographical indications-new developments in IPR-protection of IPR rights.	8
5	Interpretation and Report Writing - Meaning of Interpretation, Techniques of Interpretation, Precautions in Interpretation, Significance of Report Writing, Different steps in Writing Report, Layout of the Research Report, Types of Reports, Oral presentation, Mechanics of writing a research Report, Precautions of Writing Research Report. Case study - Research paper related to computer science	8

DEPARTMENT OF Artificial Intelligence & Data Science

Presc	Prescribed Text Book							
Sl.	Book Title	Authors	Edition	Publisher	Year			
No.								
1.	Research	C R Kothari, Gaurav	Multicolor	New Age	2019			
	Methodology:	Garg	(Fourth)	International				
	Methods and			Publishers				
	Techniques							
2	An introduction to	Garg, B.L., Karadia, R.,	Fourth	RBSA	2002			
	Research	Agarwal, F. and		Publishers				
	Methodology	Agarwal, U.K						
3	Handbook of	Subbaram NR	First	S Viswanathan	1998			
	Intellectual property			Printers and				
	law and practise			Publishing				
				Private Limited				

MOOO	C Course			
Sl. No.	Course name	Course Offered By	Year	URL
1.	Understanding Research Methods	Coursera	2024	https://www.coursera.org/learn/research -methods
2.	Fundamentals of Research Methodology	Udemy	2024	https://www.udemy.com/course/funda mentals-of-research-methodology/

Course Outcomes

CO1	Analyze qualitative and quantitative data using appropriate statistical tools to derive meaningful and valid conclusions.
CO2	Apply ethical principles and adhere to intellectual property rights to ensure integrity and
	credibility in scientific research.
CO3	Identify research gaps through critical literature review and formulate relevant research
	questions and hypotheses
CO4	Utilize modern research tools and software for data analysis and visualization to improve
	the accuracy and efficiency of research findings.

CO-PO-PSO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3		3									3	
CO2	3						1	3	1			3		
CO3		3		2						1				3
CO4	2	1		2	3									3

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks		
Internals	3	40		
QUIZ/AAT	2	10		
Tot	Total			

SEE Exam Question paper format – 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

Sem	V				
Course Title:	Optimization Techniques for Machine Learning				
Course Code:	23AI5PEOTM	Total Contact Hours: 40 hours			
L-T-P:	3-0-0	Total Credits:	3		

Unit No.	Topics	Hours
1	Introduction to Optimization: Definition, Need for optimization algorithms, Optimization Process, Basic Optimization Problem, Constraints, Handling huge matrices in Python, Mathematical Formulation, Example: A Transportation Problem	8
	One-Dimensional Search Methods: Golden Section Search, Fibonacci Search	
2	Approaches of optimization: Continuous versus Discrete Optimization, Constrained and Unconstrained Optimization, Global and Local Optimization, Stochastic and Deterministic Optimization Convexity	8
	Convex optimization: Convex Functions, Convex Optimization Problems	
3	Gradient Descent: Variants of Gradient Descent: Projected, Stochastic, Proximal, Accelerated, Coordinate Descent, Cauchy's steepest descent method, Newton's Method – Optimization in practice, conjugate gradient method	8
4	Function optimization: interpolation, extrapolation	0
4	Optimizing Model Performance Using Optimization Algorithms: Batch Normalization, Grid Search, RMSProp optimizer Random Search, derivative-free optimization algorithms, Automated	8
	Hyperparameter Tuning: Evolution algorithms, Bayesian optimization	
5	Particle Swarm Optimization: Particle Swarm Optimization (PSO) Algorithm, PSO System Parameters, Particle Swarm Optimization versus Evolutionary Computing.	8
	Ant colony Optimization: The Invisible Manager, The Pheromone, Ant	
	Colonies and Optimization, Ant Colonies and Clustering, Applications	

Presc	Prescribed Text Book								
Sl.	Book Title	Authors	Edition	Publisher	Year				
No.									
1.	Algorithms for	Mykel J. Kochenderfer	-	MIT Press	2019				
	Optimization	Tim A. Wheeler		Cambridge					
2	Numerical	Jorge Nocedal Stephen J.	Second	Springer	2006				
	Optimization	Wright							

Refe	rence Text Book				
Sl.	Book Title	Authors	Edition	Publisher	Year

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

No.					
1.	Computational	Andries P.	-	John	2002
	Intelligence An	Engelbrecht		Wiley &	
	Introduction			Sons, Ltd	
2.	An Introduction	Edwin K. P.	Second	John	2004
	to Optimization	Chong, Stanislaw		Wiley &	
	_	H. Zak		Sons, Ltd	

E-Bo	E-Book										
Sl. No.	Book Title	Authors	Edition	Publisher	Year	URL					
1.	Optimiza tion Algorith	Lovekush Chaurasia, Amol Borse	-	Global Logic	2020	https://www.globallogic.com/ wp- content/uploads/2020/02/Opti					
	ms for Machine Learning Models					mization-Algorithms-for- Machine-Learning-1.pdf					

MOC	MOOC Course									
Sl. No.	Course name	Course Offered By		URL						
1.	Optimization for Machine Learning	NPTEL	2024	https://nptel.ac.in/courses/106106245						

Course Outcomes

At the end of the course the student will be able to

CO1	Apply computation techniques for single variable functions and multiple variable functions
CO ₂	Analyse concept of search space and optimality through tuning approaches
CO ₃	Analyse population-based metaheuristic for social behavior and other engineering problems

CO-PO-PSO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3												3	
CO2		3										3		
CO3			3		3							3		

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks
Internals	3	40
QUIZ/AAT	2	10
T	50	

SEE Exam Question paper format – 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

Sem	V			
Course Title:	Internet of Things			
Course Code: 23DS5PEIOT		Total Contact Hours: 40 hours		
L-T-P:	3-0-0	Total Credits:	3	

Unit No.	Topics	Hrs				
1	Introduction to Internet of Things: Introduction: Definition and Characteristics of	8 Hrs				
	IoT, Physical Design of IoT: Things in IoT, Logical Design of IoT: IoT Functional					
	Blocks, IoT Communication Models, IoT Communication APIs.					
	IOT Enabling Technologies: Wireless Sensor Networks, Cloud Computing, Big Data					
	Analytics, Embedded Systems, IoT Levels and Deployment Templates.					
2	Introduction to Embedded Systems for IoT: Embedded Computing Basics -	8 Hrs				
	Microcontrollers, System-on-Chips, Choosing Your IoT Development Platform,					
	Working with Arduino: Introduction to Arduino, Setting Up and Developing on the					
	Arduino, Working with Raspberry Pi, Introduction to Raspberry Pi. Sensors and					
	Actuators in IoT: Working Principles and Types of Sensors, Working Principles and					
	Types of Actuators. Smart Objects - Overview and Trends.					
3	IoT and M2M Communications: Introduction, M2M, Differences between M2M and	8 Hrs				
	IoT, SDN and NFV for IoT.					
	Connecting smart things: Communication Criteria, IoT access Technologies (IEEE					
	802.15.4, IEEE 802.15.4g and IEEE 802.15.4e, IEEE 1901.2a, IEEE 802.11ah,					
	LoRaWAN, NB-IoT)					
4	IP as the IoT Network Layer: The business case for IP, The need for Optimization,	8 Hrs				
	Optimizing IP for IoT -From 6LoWPAN to 6Lo, 6TiSCH, RPL.					
	Application Protocols for IoT: Transport Layer, IoT Application Layer Protocols:					
	CoAP, MQTT.					
5	IoT Applications: Home Automation, Cities, Environment, Energy, Retail, Logistics,	8 Hrs				
	Agriculture, Industry, and Healthcare. Case Studies – Home Intrusion Detection, Smart					
	Parking, Weather Monitoring System, Air Pollution Monitoring, Forest Fire Detection,					
	and Smart Irrigation.					

Prescribed Text Books									
Book Title	Authors	Edition	Publisher	Year					
Internet Of Things - A Hands-On	Arsheep Bahga, Vijay	First	Universities	2023					
Approach	Madisetti	Edition	Press						
Designing the Internet of Things	Adrian McEwen and	First	John, Wiley &	2014					
	Hakim Cassimally	Edition	Sons						
IoT Fundamentals: Networking	David Hanes, Gonzalo	First	CISCO Press	2022					
Technologies, Protocols, and Use	Salgueiro	Edition							
Cases for the Internet of Things									

Reference Text Books								
Book Title	Authors	Edition	Publisher	Year				
Internet of Things	Surya S. Durba	First Edition	Oxford University Press	2021				
Internet of Things: Principles and Paradigms	Rajkumar buyya	First Edition	Todd Green	2016				

E-Boo	ok					
Sl.	Book Title	Authors	Edition	Publisher	Year	URL
No.						
1.	IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things	David Hanes, Gonzalo Salgueir o	First	CISCO Press	2022	https://nibmehub.com/opac-service/pdf/read/IoT%20Fundamentals.pdf
2.	Using the Web to build IOT	Dominiq ue Guinard and Vlad Trifa,	First	Manning	2016	https://www.manning.com/book s/using-the-web-to-build-the-iot

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

Course Outcomes

At the end of the course the student will be able to

CO1	Understand characteristics such as design, communication model, prototyping and
	enabling technologies required to develop application of IOT
	Apply knowledge of Internet of Things in identifying the appropriate sensors and actuators with microcontrollers
CO3	Design and develop IOT applications for solving real world problems.

CO-PO-PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1														
CO2	3	2											2	
CO3			3											2

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks
Internals	3	40
QUIZ/AAT	2	10
	50	

SEE Exam Question paper format – 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

Sem	V		
Course Title:	Cryptography And	d Network Security	
Course Code:	23DS5PECNS	Total Contact Hou	ırs: 40 hours
L-T-P:	3-0-0	Total	3
		Credits:	

Unit No.	Topics	Hrs.					
1	Introduction: Computer Security Concepts, The OSI Security Architecture, Security Attacks, Security Services, Security Mechanisms, A Model for Network Security.	8					
	Classical Encryption Techniques: Symmetric Cipher Model, Substitution Techniques — Caesar Cipher, Monoalphabetic Ciphers, Play fair Cipher, Hill Cipher, Polyalphabetic Ciphers, One-Time Pad, Transposition Techniques.						
	Block Ciphers: Traditional Block Cipher Structure – Stream Ciphers and Block Ciphers, Motivation for the Feistel Cipher Structure, The						
2	Feistel Cipher, Block Cipher Design Principles, The Simplified Data	8					
	Encryption Standard (S-DES) – S-DES Encryption, S-DES Decryption, SDES Key Generation.						
	Stream Ciphers: StreamCiphers, RC4 – Initialization of S,						
	StreamGeneration, Strength of RC4						
3	Public-Key Cryptosystems: Principles of Public-Key Cryptosystems – Public-Key Cryptosystems, Applications for Public-Key Cryptosystems, Requirements for Public-Key Cryptosystems, Public- Key Cryptanalysis, The RSA Algorithm – Description of the Algorithm, Computational Aspects, The Security of RSA, Diffie-Hellman Key Exchange – The Algorithm, Key Exchange Protocols, Man-in-the- Middle Attack.						
	Cryptographic Hash Functions: Secure Hash Algorithm (SHA) –						
	SHA-512 Logic, SHA-512 Round Function, Examples.						
	Key Management and Distribution: Symmetric Key Distribution using Symmetric Encryption, Symmetric Key Distribution using						
	Asymmetric Encryption, Distribution of Public Keys.						
4	Transport-Level Security: Transport Layer Security – Architecture, Record Protocol, Change Cipher Spec Protocol, Alert Protocol,	8					
	Handshake Protocol, Cryptographic Computations, Heartbeat Protocol, SSL/TLS Attacks, HTTPS – Connection Initiation, Connection Closure						
	Digital Signatures: Digital Signatures – Properties, Attacks and						
5	Forgeries, Digital Signature Requirements, Direct Digital Signature, SCHNORR Digital Signature Scheme, NIST Digital Signature	8					
	Algorithm.						
	IP Security: IP Security Overview – Applications, Benefits, Routing						

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

Applications, IPsec Documents, IPsec Services, IP Security Policy –	
Security Associations and its Database, Security Policy Database, IP	
Traffic Processing, Encapsulating Security Payload – ESP Format,	
Encryption and Authentication Algorithms.	

Preso	Prescribed Text Book						
Sl.	Book Title	Authors	Edition	Publisher	Year		
No.							
1.	Cryptography and	William Stallings	7th	Pearson	2017		
	Network Security –	-	Edition				
	Principles and Practice						

Referen	Reference Text Book					
Sl. No.	Book Title	Authors	Editio	Publisher	Year	
			n			
1.	Network Security	William	4th	Pearson	2012	
	Essentials Applications	Stallings	Edition			
	and Standards	_				
2.	Network Security	Charlie	Second	PHI	2013	
	Private Communication	Kaufman,				
	in a Public world	Radia				
		Perlman and				
		Mike Speciner				

MO	MOOC Course						
Sl. No.	Course name	Course Offered By	Yea r	URL			
1.	Cryptography I	Coursera	202 4	https://www.coursera.org/learn/cryp to			
2.	Cryptography and System Security	Udemy	202 4	https://www.coursera.org/specializations/agile-development			

Course Outcomes

At the end of the course the student will be able to

CO1	Understand the fundamental concepts of computer security, including security architecture, attacks, services, and mechanisms.		
CO2	Apply classical encryption techniques and block cipher structures to ensure data confidentiality and integrity.		

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

CO3	Analyze the principles and algorithms of public-key cryptosystems and cryptographic hash functions for secure communication.
CO4	Make an effective communication and presentation in a team on different algorithms
CO4	or tools used in cryptography and network security.

CO-PO-PSO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1														
CO2	3												2	
CO3		3										2		
CO4									1	1			2	

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks					
Internals	3	40					
QUIZ/AAT	2	10					
7	Total						

SEE Exam Question paper format – 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

Sem	V		
Course Title:	Responsible AI		
Course Code:	23DS5PERAI	Total Contact Hours: 40 h	nours
L-T-P:	3-0-0	Total Credits:	3

Unit No.	Topics	Hrs
1	An Ethical Framework for a Good AI Society: opportunities, Risks, principles and Recommendations. Establishing the rules for building trustworthy AI.	8
	Translating principles into practices of digital ethics : five risks of being Unethical The Ethics of Algorithms: Key problems and Solution How to Design AI for Social Good: Seven Essential Factors.	
2	How to design AI for social good: seven essential factors From What to How: An Initial Review of publicly available AI Ethics tools, Methods and Research to Translate principles into Practices	8
	Innovating with Confidence : Embedding AI Governance and fairness in financial Services Risk management framework, What the near future of AI could be.	
	Human-AI Relationship: AI and Workforce, Autonomous Machines and Moral Decisions, AI in HealthCare : balancing Progress and Ethics	
3	Responsible AI: Need for ethics in AI. AI for Society and Humanity, ISO/IEC 42001: A New Standard for Ethical and Responsible AI Management	8
	Fairness and Bias : Sources of Biases, Exploratory data analysis, limitation of a dataset, Preprocessing, inprocessing and postprocessing to remove bias, Group fairness and Individual fairness, Counterfactual fairness	
4	Interpretability and explainability: Interpretability through simplification and visualization, Intrinsic interpretable methods, Post Hoc interpretability, Explainability through causality, Model agnostic Interpretation	8
5	Privacy preservation : Attack models, Privacy-preserving Learning, Differential privacy, Federated learning, HIPAA Compliance Standards with AI Relevance:	8
	Case study: Recommendation systems, Medical diagnosis, Hiring/ Education	

Prescribed Text Book											
Sl.	Book Title	Authors	Edition	Publisher	Year						
No.											

1.	Ethics, governance and Policies in Artificial Intelligence	Luciano Floridi	1st Edition	Springer	2021
2.	Ethics and AI	Aaron Aboagye	1st Edition	kindle	2023
3.	Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way	Virginia Dignum	ISBN-10: 3030303705, ISBN-13: 978- 3030303709	Springer Nature	2019
4	Interpretable Machine Learning	Christoph Molnar	1st edition	Lulu	2019
	nce Text Book	T	T	T	1
Sl. No.	Book Title	Authors	Edition	Publisher	Year
1.	Responsible AI in the Enterprise	Adnan Masood, Heather Dawe	1st	Packt	2023

E-B	E-Book											
Sl. No	Book Title	Authors	Editi on	Publisher	Year	URL						
1.	Responsi ble AI - Interdisci plinary perspecti ves	Silja Voeneky, Philipp Kellmeyer, Oliver Mueller, Wolfram Burgard,	1st	Cambridg e University Press	2022	https://doi.org/10.1017/97810 09207898						

MOOC	MOOC Course										
Sl. No.	Course name	Course Offered By	Year	URL							
1.	Responsibl e AI in Generative AI era	Coursera	2024	https://www.coursera.org/learn/responsible-ai-in-generative-ai?action=enroll							
2.	Responsibl e & Safe AI systems	NPTEL	2024	https://onlinecourses.nptel.ac.in/noc24_cs132/preview							

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

Course Outcomes

At the end of the course, the student will be able to

CO1	Apply ethical frameworks and principles to the development and use of AI systems, ensuring they align with societal values and address potential risks.
CO2	Design AI systems for social good by understanding the seven essential factors and translating ethical principles into practical tools and methodologies.
CO3	Develop skills to address issues of fairness and bias in AI systems, including techniques for bias detection, data preprocessing, and ensuring both group and individual fairness.
CO4	Implement AI models that cater to standards, including methods for simplification, visualization, and post hoc interpretation to make AI decisions transparent and understandable

CO-PO-PSO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3					2	2	3					3	
CO2		2				2	2	3				3		
CO3			3											2
CO4	2							2						2

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks
Internals	3	40
QUIZ/AAT	2	10
To	50	

SEE Exam Question paper format – 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

Semester	V		
Course Title:	Mini Project – Social Netw	ork Analytics	
Course Code:	23AI5PWSNA	Total Contact Hours:3	0 hours
L-T-P:	0-0-2	Total Credits:	2

Sl.No	Lab Programs
1	Create basic graph structures using NetworkX and Demonstrate how to add and access node and edge attributes Customer Segmentation: Use a simple graph to represent customer interactions, where nodes are customers and edges represent interactions like referrals or shared reviews. Add attributes to nodes (e.g., customer purchase history) and edges (e.g., frequency of interaction).
2	Create and visualize directed graphs Marketing Campaign Spread: Model user interactions on social media as directed graphs, where nodes are users and directed edges represent actions like shares or mentions. Calculate the degree of nodes in a graph Employee Collaboration: Identify the most connected employees in a collaboration network using degree analysis to find key influencers.
3	Find and visualize the shortest path between nodes. Supply Chain Optimization: Identify the shortest path from suppliers to retailers to optimize the supply chain network.
4	Compute various centrality measures (degree, betweenness, closeness). Customer Segmentation: Identify influential customers using centrality measures to target marketing campaigns effectively.
5	Calculate the clustering coefficient of nodes in a graph. Employee Collaboration: Analyze collaboration density to improve team communication. Use community detection algorithms to find clusters within the network. Marketing Campaign Spread: Identify clusters of users who are more likely to share marketing messages.
6	Visualize a network using node and edge attributes to influence the appearance. Customer Segmentation: Visualize customer network using attributes like customer lifetime value or interaction frequency.
7	Work with bipartite graphs, visualize, and analyze them Product-User Relationships: Model the relationship between products and customers

	as a bipartite graph.
8	Explore connectivity within graphs and identify connected components. Supply Chain Optimization: Analyze the robustness of the supply chain by identifying connected components and potential weak points.
9	Check if two graphs are isomorphic (structurally identical). Product Line Similarity: Determine if two product lines have the same structure by comparing their relationship graphs.
10	Analyze the resilience of a network by removing nodes or edges. Employee Collaboration: Understand the impact of losing key employees on the overall collaboration network.

Sl. No.	Book Title	Authors	Edition	Publisher	Year
1.	Social Network Analysis: Methods and Applications.	Stanley Wasserman, Katherine Faust		Cambridge University Press	2012
2.	Networks, Crowds, and Markets: Reasoning about a Highly Connected World	David Easley, Jon Kleinberg.		Cambridge University Press	2010
Refer	ence Text Book	1	•	1	
Sl. No.	Book Title	Authors	Edition	Publisher	Year
1.	Social Network Analysis	John Scott	3rd Edition	SAGE publications Ltd.,	2012
2.	Understanding- Social-Networks- Theories-Concepts- and findings	Charles Kadushin		Oxford university press	2012

E-Boo	ok				
Sl.	Book Title	Authors	Publisher	Year	URL
No.					

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

1	Networks, Crowds, and Markets: Reasoning about a Highly Connected World	David Easley, Jon Kleinber g.	Cambridge University Press	2010	https://www.cs.cornell.edu/ home/kleinber/networks- book/networks-book.pdf
2.	Social Network Analysis theory and applications.	Dr. John T.Bell	University of Illinois Chicago	2006 & 2013	https://www.cs.uic.edu/~jb ell/CourseNotes/Operating Systems/index.html

Sl. No.	Course name	Course Offered By	Year	URL
1.	Social Network Analysis	Coursera	2024	https://www.coursera.org/learn/social -network-analysis
2.	Applied Social Network Analysis in Python	Coursera	2024	https://www.coursera.org/learn/pytho n-social-network-analysis

Course Outcomes

At the end of the course the student will be able to

CO1	Understand the Fundamentals of Graph Theory and Network Structures
CO2	Construct and Visualize Network Graphs Using NetworkX
CO3	Apply Community Detection and Analyze Network Components
CO4	Evaluate Network Resilience and Robustness

CO-PO-PSO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2												
CO2	2	2	2	3	3					2				3
CO3		3		3	2	2					2		3	
CO4		3		2	2	2	3					3		

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks
Internals	-	-
QUIZ/AAT	-	-
Lab Component	-	50
	50	

Autonomous Institute, Affiliated to VTU
DEPARTMENT OF Artificial Intelligence & Data Science

SEE Exam Question paper format – 100M

Students execute programs on Data Visualization using Python and Tableau in the presence of External and Internal examiners.

Sem	V	
Course Title:	Environmental Stud	lies
Course Code:	23DC5HSEVS	Total Contact Hours: 13 hours
L-T-P:	1-0-0	Total Credits: 1

Unit No.	Topics	Hrs.				
	Introduction to Environment: Definition, About Earth i.e					
	Atmosphere, Hydrosphere, Lithosphere and Biosphere, Structure of					
1	Atmosphere, Internal structure of Earth, Ecology & Ecosystem,	2				
	balanced ecosystem, types of ecosystem.					
	Effect of Human activities on Environment: i) Agriculture ii)					
	Housing iii) Industries iv) Mining and v) Transportation activities.	2				
2	Sustainability Standards: ISO 14001, LEED, REACH, ISO 50001,					
	UN's Sustainable Development Goals (SDGs).					
	Natural Resources: Definition, Water resources – its availability,					
3	quality, water borne & water induced diseases. Mineral resources,	3				
	Forest resources, Energy resources – conventional & non - conventional					
	energy resources, Hydroelectric, wind power, solar, Biogas. Fossil fuel-					
	based energy resources- Coal, Oil & Gas, Nuclear power. Hydrogen as					
	an alternate future source of energy.					
	Environmental pollution: Introduction and its types, Water pollution –					
	definition, effects, control methods. Land pollution - definition, effects,	3				
4	Solid waste management. Noise pollution - definition, effects, control					
	methods.					
	Current environmental issues & importance: Population growth,					
	effects & control, climatic changes, Global warming, Acid rain, ozone					
	layer depletion & effects, Environmental protection, Role of					
	government, legal aspects.					

DEPARTMENT OF Artificial Intelligence & Data Science

	Green Computing- Sustainable IT Practices and Metrics:	
	Introduction to Sustainable Information Systems, Environmental	
5	Impacts of IT- E-waste, Carbon footprint, Energy footprint, Water	3
	footprint. Green IT- Green Data Centers, Green Data Storage,	
	Applying IT for Enhancing Environmental Sustainability, Green IT	
	Standards and Eco-Labelling of IT.	

TEXT BOOKS:

Prescri	Prescribed Text Book								
Sl.	Book Title	Authors	Edition	Publisher	Year				
No.									
1.	Environmental	Dr. Geetha	Seventh	SUNSTAR	2016				
	studies	Balakrishnan							
2	Harnagging Croon	Con Murugasan	First	John Wilov &	2016				
4	Harnessing Green	San Murugesan,	FIISt	John Wiley &	2010				
	IT Principles and	G.R. Gangadharan		Sons					
	Practices								
Refere	nce Text Book		1		l				
Sl.	Book Title	Authors	Edition	Publisher	Year				
No.									
1.	Environmental	Benny Joseph	Second	Tata McGraw-	2019				
	studies			Hill					

E-Books								
Sl. No.	Book Title	Publisher	Year	URL				
1.	Environment al studies	University Grants Commission (UGC)	2019	https://www.ugc.gov.in/oldpdf/modelc urriculum/env.pdf				

MOOC (MOOC Course									
Sl. No.	Course name	Course Offered By	Year	URL						
1.	Environme ntal studies	Swayam	2019	https://onlinecourses.swayam2.ac.in/cec19_bt03/preview						

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

2	Sustainabl	Microsoft	2022	https://learn.microsoft.com/en-
	e Software			us/training/modules/sustainable-software-
	Developm			engineering-overv
	ent			

Course Outcomes

At the end of the course the student will be able to

CO1	Apply the environmental concepts for conservation and protection of natural resources
CO2	Identify and establish relationships between social, economic, and ethical values from environmental perspectives, with reference to sustainability standards and the UN Sustainable Development Goals (SDGs).
CO3	Analyze the impact of Computing solutions in the environmental context and realize the need for sustainable development

CO-PO-PSO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	2										
CO2		2					2	1			
CO3		2					2				2

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks
Internals	1	25
QUIZ/AAT	2	25
Tot	50	

DEPARTMENT OF Artificial Intelligence & Data Science

	Course Type	Code	Course Title		ts		Total Credits	Total Hours
				L	Т	P		
1	PC	23DS6PCCCT	Cloud Computing	2	1	0	3	4
2	PC	23DS6PCNGD	Next Gen Databases	3	0	1	4	5
3	PC	23DS6PCNLP	Natural Language Processing & Generative AI	3	0	1	4	5
4	PC	23DC6PCSEA	Software Engineering & Agile Methodologies	le 2 0 (0	2	2
5	PE	23AI6PEDWD	Data Ware House and Data Mining	3	3 0 0		3	3
		23AI6PEVAL	Video Analytics					
		23AI6PEAVR	Augmented Reality / Virtual Reality					
		23AI6PEDIP	Digital Image Processing					
6	OE	23AI6OEIAI	Introduction to AI	3	0	0	3	3
7	PW	23AI6PWPP1	Project work – Phase I	0	0	2	2	4
8	AE	23DS6AECPG	Competitive Programming	0	0	1	1	2
		23AI6AEOOJ	OOPs with JAVA					
		23DSAEDOP	DevOps					
9	NCMC	23NCMC3NS1	NSS	0	0 0 0		0	1
	23NCMC3YG1		YOGA					
		23NCMC3PE1	Physical Edu. (Sports and Athletics)					
		Т	OTAL				22	29

PC-13, PE-3, OE-3, PW-2, AE-1

Semester	VI		
Course Title:	Cloud Computing		
Course Code:	23DS6PCCCT	Total Contact Hours: 4	10 hours
L-T-P:	2-1-0	Total Credits:	3

Unit	Topics	Hou
No. 1	Introduction, Cloud Infrastructure: Cloud computing, Cloud computing delivery models and services, Ethical issues, Cloud vulnerabilities, Cloud computing at Amazon, Cloud computing the Google perspective, Microsoft Windows Azure and online services, Open source software platforms for private clouds, Cloud storage diversity and vendor lock-in, Energy use and ecological impact, Service level agreements, User experience and software licensing. Exercises and problems.	8 8
2	Cloud Computing: Application Paradigms: Challenges of cloud computing, Architectural styles of cloud computing, Workflows: Coordination of multiple activities, Coordination based on a state machine model: The Zookeeper, The Map Reduce programming model, A case study: The Gre The Web application, Cloud for science and engineering, High performance computing on a cloud, Cloud computing for Biology research, Social computing, digital content and cloud computing.	8
3	Cloud Resource Virtualization: Virtualization, Layering and virtualization, Virtual machine monitors, Virtual Machines, Performance and Security Isolation, Full virtualization and paravirtualization, Hardware support for virtualization, Case Study: Xen a VMM based paravirtualization, Optimization of network virtualization, vBlades, Performance comparison of virtual machines, The dark side of virtualization, Exercises and problems	8
4	Cloud Resource Management and Scheduling: Policies and mechanisms for resource management, Stability of a two-level resource allocation architecture, Feedback control based on dynamic thresholds, Coordination of specialized autonomic performance managers, A utility-based model for cloud-based Web services Resourcing bundling: Combinatorial auctions for cloud resources, Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling MapReduce applications subject to deadlines, Resource management and	8
	dynamic scaling, Exercises and problems	
5	Cloud Security: Cloud security risks, Security: The top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating system security, Virtual machine Security, Security of virtualization, Security risks	8

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

posed by shared images, Security risks posed by a management OS, A trusted virtual machine monitor,

Cloud Application Development: Amazon web services: EC2 instances, Connecting clients to cloud instances through firewalls, Security rules for application and transport layer protocols in EC2, How to launch an EC2 Linux instance and connect to it, How to use S3 in java, Cloud-based simulation of a distributed trust algorithm, A trust management service, A cloud service for adaptive data streaming, Cloud based optimal FPGA synthesis .Exercises and problems.

Presc	ribed Text Book			
Sl.	Book Title	Authors	Publisher	Year
No.				
1.	Cloud Computing : Theory and Practice	Dan C Marinescu Elsevier	Morgan Kaufmann	2013
2.	Computing Principles and Paradigms	RajkumarBuyya , James Broberg, Andrzej Goscinsk,	John Wiley & Sons	2014
Refer	ence Text Book		1	
Sl. No.	Book Title	Authors	Publisher	Year
1.	Cloud Computing Implementation, Management and Security	John W Rittinghouse, James F Ransome	CRC Press	2013

E-B	E-Book								
Sl.	Book	Authors	Editio	Publishe	Year	URL			
No	Title		n	r					
1.	Cloud Computin g: Theory and Practice	Dan C Marinescu Elsevier	-	Morgan Kaufmann	2013	https://eclass.uoa.gr/modul es/document/file.php/D416 /CloudComputingTheoryA ndPractice.pdf			
2.	Computin g Principles and Paradigms	RajkumarBuyya , James Broberg, Andrzej Goscinsk,	-	John Wiley & Sons	2014	https://dhoto.lecturer.pens. ac.id/lecture_notes/internet of_things/CLOUD%20C OMPUTING%20Principle s%20and%20Paradigms.pd f			

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

MOOC Course					
Sl. No.	Course name	Course Offered By	Year	URL	
1.	Introduction to Cloud Computing	Coursera	2024	https://www.courser a.org/learn/introduct ion-to-cloud	
2.	Cloud Computing Foundations	Coursera	2024	https://www.courser a.org/learn/cloud- computing- foundations-duke	

Course Outcomes

At the end of the course the student will be able to

CO1	Apply cloud computing models and services to solve practical problems.
CO2	Analyze cloud resource management and virtualization techniques to evaluate their impact on performance and security.
CO3	Demonstrate the working of VM and VMM on any cloud platforms(public/private), and run a software service on that.
CO4	Develop cloud-based solutions for different applications using appropriate cloud technologies.

CO-PO-PSO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	2			1				2				3	
CO2	2	1	2	2	2				3			3		
CO3		2	1	2	1				2					3
CO4		2	3	2	2				2					3

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks
Internals	3	40
QUIZ/AAT	2	10
Tot	50	

SEE Exam Question paper format – 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

Sem	VI	
Course Title:	Next Gen Databases	6
Course Code:	23DS6PCNGD	Total Contact Hours: 40 hours
L-T-P:	3-0-1	Total Credits: 4

Unit No.	Topics	Hrs.
1	Early Database Management Systems - Database revolutions: First, second and Third generation - Big Data Revolution - Google: Pioneer of Big Data, Hadoop: Open-Source Google Stack. Introduction to Sharding - CAP Theorem	8
2	Object Oriented Database: Introduction, properties and applications. PostgreSQL, Relations, CRUD and Joins, starting with SQL, Working with tables, Join Reads, The outer limits, Fast Lookups with Indexing, Advanced queries, Code and Rules, Aggregate functions, Grouping, Window Functions, Transactions, Stored procedures, Pull the triggers, View, Full Text and Multidimensions, Fuzzy searching, PostgreSQL's Strengths and Weaknesses	8
3	Document Database: Introduction and its types. Couch DB, CRUD, Futon and cURL Redux, Getting Comfortable with Futon, Performing RESTful CRUD Operations with cURL, Creating a Document with POST, Updating a Document with PUT, Removing a Document with DELETE, Creating and Querying Views, Accessing Documents Through Views, Importing Data Into CouchDB Using Ruby, Creating Advanced Views with Reducers, CouchDB's Strengths and Weaknesses	8
4	Graph Database: Introduction and its architecture Neo4J: Graphs, Groovy, and CRUD, Neo4j's Web Interface, Neo4j via Gremlin, The Power of Pipes, Pipeline vs. Vertex, Schemaless Social, Domain-Specific Steps, Update, Delete, Done, REST, Indexes, Creating Nodes and Relationships Using REST, Indexing, Distributed High Availability, Transactions, Neo4J's Strengths and Weaknesses, NEo4J on CAP	8
5	Key Value Database: Introduction, features and advantages Redis: Data Structure Server Store, CRUD and Datatypes, Transactions, Complex Data Types, Expiry, Database Namespaces, Advanced Usage, Distribution, publish-subscribe, Redis Configuration, Master-Slave Replication, Data Dump, Redis Cluster, Bloom Filters, Redis's Strengths and Weaknesses SSD & In-Memory Databases—SAP HANA, Berkeley Analytics Data Stack and Spark.	8

	ribed Text Book		_		
Sl. No.	Book Title	Auth ors	Edition	Publisher	Year
1	Next Generation Databases	Guy Harrison	First	Apress	2015
2	Seven Databases in Seven Weeks - A Guide to Modern Databases and the NoSQL Movement	Erick Redmond, Jim R Wilson	Second	Pragmatic Bookshelf	2018

Refer	rence Text Book				
Sl. No.	Book Title	Authors	Edition	Publisher	Year
1	NoSQL for Dummies	Adam Fowler	First Edition	John Wiley & Sons	2015
2	Fundamentals of Database Systems	Ramez Elmasri and Shamkant Navathe	Sixth Edition	Pearson	2011

E-Bo	ook					
Sl.	Book	Authors	Edition	Publisher	Year	URL
No.	Title					
1.	Seven Databases in Seven Weeks	Eric Redmond, Jim R. Wilson	First	O'Reilly	2012	https://lib.fbtuit.uz/assets/files/8. -EricRedmondJimRWilson- SevenDatabasesinSevenWeeks- EN.pdf
2.	NoSQL for Mere Mortals	Dan Sullivan	Second	Addison- Wesley Professiona	2015	https://datubaze.wordpress.com/ wp- content/uploads/2021/03/nosql- for-mere-mortals.pdf

MOO	C Courses			
Sl. No.	Course name	Course Offered By	Year	URL
1	Introducti on to NoSQL Databases	Course era	2024	https://www.coursera.org/learn/introduction- to-nosql-databases
2	Introducti on to Graph Databases using Neo4J	Udemy	2024	https://www.udemy.com/course/introduction _to-graph-databases-using-neo4j

DEPARTMENT OF Artificial Intelligence & Data Science

Laboratory Plan

Laborator	
Lab Program	Program Details
	PostgreSQL Query Questions - Hospital Management System
	Create a database for a hospital management system with tables: Patients (PatientID, Name, Age, Gender, AdmissionDate) and Doctors (DoctorID, Name, Specialization, Experience).
	a) Fetch Patient Details:
	b) List Patients Admitted on a Specific Date ('2024-06-15'):
1	c) List Patients by Age Group:
	d) Update Patient Details (Change Name for PatientID = 1):
	e) List Doctors by Specialization ('Cardiology'):
	f) Count Patients per Doctor:
	g) Calculate Average Experience of Doctors:
	CRUD operations in CouchDB Student Database
	Create a student database with the fields: (SRN, Sname, Degree, Sem, CGPA)
	a) Display all the documents
	b) Display all the students in BCA
_	c) Display all the students in ascending order
2	d) Display first 5 students
	e) Display students 5,6,7
	f) List the degree of student "Rahul"
	g) Display students details of 5,6,7 in descending order of percentage
	h) Display all the BCA students with CGPA greater than 6, but less than 7.5
	CRUD operations in CouchDB Library Database
	Create a library database with the fields: (ISBN, Title, Author, Genre, PublicationYear,
	CopiesAvailable, Rating).
	a) Display all the documents in the library database.
3	b) Display all the books in the genre "Fiction".
	c) Display all books sorted by their Title in alphabetical order.
	d) Display the first 3 books.
	e) Display books 4, 5, and 6.
	f) List the Author of the book titled "The Great Gatsby".
4	CRUD Operations in Neo4j - Social Network Database

	Create a social network database with nodes: User (UserID, Username) and					
	relationships: (FOLLOWS).					
	a) Write a query to display all users.					
	b) Write a query to display users followed by a specific user with Username "Jane".					
	c) Write a query to display all users in ascending order by Username.					
	d) Write a query to find users who follow both "Alice" and "Bob".					
	e) Write a query to find users with the most number of followers.					
	f) Display first 5 users:					
	CRUD Operations in Neo4j - Movie Recommendation Database: where we have					
	nodes: Movie (MovieID, Title) and User (UserID, Username), and relationships:					
	(LIKES) indicating a user likes a specific movie.					
	a) Write a query to display all movies liked by a specific user with Username					
	"John".					
5	b) Write a query to find all users who like the movie titled "Inception".					
	c) Write a query to display all movies in ascending order by Title.					
	d) Write a query to find users who like both "The Matrix" and "Inception".					
	e) Write a query to find the most liked movie.					
	f) Write a query to display the top 5 users who like the most movies.					
	Redis Query Questions - Product Catalog Scenario					
	Create a product catalog database with products having attributes: (ProductID, Name,					
	Category, Price)					
	a) Insert products into Redis with keys like product:{ProductID} and values as					
	JSON objects containing Name, Category, and Price.					
6	b) Retrieve details of a specific product by ProductID.					
	c) Fetch all products belonging to a specific category.(Electronics)					
	d) List Products in a Price Range (500 - 1000):					
	e) Update Product Price:					
	f) Delete a Product:					
	·					

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

	Consider an employee management system where each employee has attributes:						
	EmployeeID, Name, Department, Position, Salary).						
	Questions:						
	a) Insert Employee Details into Redis: Insert employee records into Redis with						
	keys like employee:{EmployeeID} and values as JSON objects containing						
	Name, Department, Position, and Salary.						
7	b) Retrieve All Employees in a Specific Department (e.g., "HR"): Write a Redis						
	query to fetch all employees belonging to a specific department, such as "HR."						
	c) List Employees with a Salary Above a Certain Amount (e.g., \$50,000): Write a						
	Redis query to list all employees whose salaries are above a certain threshold						
	(e.g., \$50,000).						
	d) Update an Employee's Position: Write a Redis query to update the position of a						
	specific employee identified by their Employee ID.						

Course Outcomes

At the end of the course the student will be able to

CO1	Apply appropriate database operations and queries for SQL and NoSQL databases.
CO2	Analyze different database architectures and operations for next generation databases.
CO3	Design and execute complex queries and transactions using next-gen databases leveraging advanced features.
CO4	Conduct experiments for demonstrating operations on different next generation databases.
CO5	Investigate NoSQL database architectures through case study presentations or research paper study to understand their effectiveness in solving complex database challenges.

CO-PO-PSO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3												3	
CO2		3										3		
CO3			2											3
CO4				3	3									3
CO5	1	1							1	1	1			3

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	Number of Assessments	Marks
Internals	3	20
QUIZ/AAT	1	5
Lab Component	CIE + Lab Test	25
Tota	50	

SEE Exam Question paper format – 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

Sem	VI					
Course Title:	Natural Language Processing	Natural Language Processing and Generative AI				
Course Code:	23DS6PCNLP	Total Contact Hours: 40 hours				
L-T-P:	3-0-1	Total Credits:	3			

Unit No.	Topics	Hrs
1	Introduction: What is Natural Language Processing (NLP), Origins of NLP, Phases of NLP, Ambiguities in NLP. Why is NLP hard?	8
	Text Processing: Regular Expressions, Word normalisation - Lemmatization, Stemming, Tokenizations - Word Tokenization, Character Tokenization, Byte Pair Encoding, Word piece	
2	Sequence Labeling for Parts of Speech and Named Entities: English Word Classes, Part-of-Speech Tagging, Named Entities and Named Entity Tagging, HMM Part-of-Speech Tagging	8
	Vector Semantics and Embeddings: Lexical Semantics, Vector Semantics, Words and Vectors, Cosine for measuring similarity, TF-IDF: Weighing terms in the vector, Pointwise Mutual Information (PMI), Word embeddings.	
	Parsing: Constituency Parsing, Dependency Parsing: Transition-Based Dependency Parsing	
3	Language Modeling: Types of language models, Statistical Language Models	8
	The Transformer: A Self-Attention Network, Multihead Attention, Transformer Blocks, The Residual Stream view of the Transformer Block, The input: embeddings for token and position, The Language Modeling Head, Large Language Models with Transformers, Large Language Models: Generation by Sampling, Large Language Models: Training Transformers	
	Introduction to Pre-trained Language Models, Masked Language Model - BERT. Fine-tuning LLMs for specific tasks	
4	Generative Modeling: What is Generative Modeling? Probabilistic Generative Models	8
	Variational Autoencoders: Building a VAE, Using VAE to generate faces.	

		Transformer based Generative Models (GPT and T5), Potential Harms from Language Models.		
5	5	Teaching Machines to Paint, Write and Compose: Creating CycleGAN to paint, LSTM Network to generate text, Music generating RNN	8	

bed Text Book				
Book Title	Authors	Edition	Publisher	Year
Speech and	James H Martin	Third	Pearson	2024
Language			Education India	
Processing: An				
Introduction to				
Natural Language				
Processing,				
Computational				
Linguistics and				
Speech Recognition				
Generative Deep	David Foster	Second	O'Reilly	2023
Learning				
nce Text Book		1		•
Book Title	Authors	Edition	Publisher	Year
Natural Language Processing and Information Retrieval	Tanveer Siddiqui, U.S. Tiwary	First	Oxford University Press	2008
Natural Language Understanding	James Allen	Second	Benjamin /Cummings publishing company	1995
Generative AI with Python and Tensorflow?	Raghav Bali	First	Packt	2021
	Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition Generative Deep Learning nce Text Book Book Title Natural Language Processing and Information Retrieval Natural Language Understanding Generative AI with	Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition Generative Deep Learning nce Text Book Book Title Natural Language Processing and Information Retrieval Natural Language Understanding Generative AI with Python and James H Martin James H Martin	Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition Generative Deep Learning Tanveer Frocessing and Information Retrieval Natural Language Understanding Generative AI with Python and James H Martin Third	Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition Generative Deep Learning Third Pearson Education India Processing, Computational Linguistics and Speech Recognition Generative Deep Learning Tanveer Processing and Information Retrieval Natural Language Understanding Publisher Oxford University Press Press Benjamin /Cummings publishing company Generative AI with Python and

E-B	ook					
Sl.	Book Title	Authors	Edition	Publisher	Ye	URL
No					ar	
•						
1.	Natural	Akshay	First	APRESS	20	https://www.aitskadapa.ac.i
	Language	Kulkarni			19	n/e-
	Processing	Adarsha				books/CSE/DEEP%20LEA
	Recipes	Shivananda				RNING/Natural%20Langu

DEPARTMENT OF Artificial Intelligence & Data Science

2.	HANDBOOK OF NATURAL LANGUAGE PROCESSING	NITIN INDURKH Y A FRED J. DAMERA U	Second	CRC Press	20 10	age%20Processing%20Rec ipes_%20Unlocking%20Te xt%20Data%20with%20M achine%20Learning%20an d%20Deep%20Learning%20using%20Python%20(%20PDFDrive%20).pdf https://karczmarczuk.users.greyc.fr/TEACH/TAL/Doc/Handbook%20Of%20Nat ural%20Language%20Processing,%20Second%20Edit ion%20Chapman%20&%20Hall%20Crc%20Machine%20Learning%20&%20Pattern%20Recognition%202010.pdf
3	Natural Language Processing with Python	Steven Bird, Ewan Klein, and Edward Loper	First	O'Reilly	20 11	https://www.nltk.org/book/

MOC	OC Course			
Sl. No.	Course name	Course Offered By	Year	URL
1.	Natural Language Processing	SWAYA M	2024	https://onlinecourses.nptel.ac.in/noc19_cs56/pre view
2.	Natural Language Processing	Coursera	2024	https://www.coursera.org/specializations/natural-language-processing
3	Generative AI Fundamentals Specialization	Coursera	2024	https://www.coursera.org/specializations/generative-ai-for-everyone

Laboratory Plan

Sl. No.	Lab Program
1	Write a Python program using nltk to perform tokenization, eliminate stopwords, perform stemming and lemmatization

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

2	Implement traditional machine learning algorithms to perform Parts of Speech tagging and Named entity recognition.
3	Write a python program to find Term Frequency and Inverse Document Frequency (TF-IDF).
4	Write a python program to find all unigrams, bigrams and trigrams present in the given corpus.
5	Build traditional machine learning models for sentiment analysis. Compare the performance with a transformer model fine tuned on a dataset like IMDb or Twitter
6	Implement a VAE on the MNIST dataset and generate new images by sampling from the latent space.
7	Fine-tune a pre-trained language model (e.g., GPT, BERT) using transfer learning techniques on a domain-specific dataset and evaluate its performance for text generation tasks.
8	Implement a Long Short-Term Memory (LSTM) model on a dataset of text sequences and generate new text samples.

Course Outcomes

At the end of the course the student will be able to

CO1	Apply existing mathematical models and machine learning algorithms to build NLP applications.
CO2	Analyze NLP tasks like text pre-processing, part-of-speech tagging, syntax parsing using existing algorithms and frameworks.
CO3	Design and develop applications using Natural Language Processing and Generative AI.
CO4	Conduct experiments to implement applications based on statistical NLP and Deep learning based NLP

CO-PO-PSO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3												3	
CO2		3										3		
CO3			2		2									3
CO4				3	2									3

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	Number of Assessments	Marks
Internals	3	20
QUIZ/AAT	1	5
Lab Component	CIE + Lab Test	25
Tota	50	

SEE Exam Question paper format – 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

Sem	VI						
Course Title:	Software Engineering & Agile Methodologies						
Course Code:	23DC6PCSEA	Total Contact Hours: 26 hours					
L-T-P:	2-0-0	Total Credits: 2					

Unit No.	Topics	Hrs.					
	Introduction - Software metrics, Overview of Software Development Projects, Emergence of Software Engineering	5					
1	Software Life Cycle Models - Basic Concepts, Waterfall Model and its Extensions, Rapid Application Development, Agile Development Models: Essential Ideas Behind Agile Models, Agile vs. Other Models, Spiral Model, Comparison of Different Life Cycle Models						
2	Requirements Analysis and Specification - Requirements Gathering and Analysis, Software Requirements Specification (SRS) Case Study - IEEE SRS	5					
	Software Design - Overview of the Design Process, Characteristics of Good Software Design: Cohesion and Coupling, Approaches to Software Design						
	Function-Oriented Software Design - Overview of SA/SD Methodology, Structured Analysis: Developing the DFD Model of a System, Structured Design and Detailed Design						
3	Software Project Management - Project Planning, Metrics for Project Size Estimation, Project Estimation Techniques: Empirical Estimation Techniques, COCOMO (A Heuristic Estimation Technique), Scheduling and Team Structures	5					
	Understanding Agile - What is Agile?, The Agile Manifesto and Principles, Why Agile Works Better than Traditional Models Kanban and Lean - Introduction to Kanban Method, Lean Principles						
4	in Agile Jira Fundamentals - Overview of Jira: Project Boards, Enrich Issues, Kanban Boards, Scrum Projects, Quick Search and Basic Search, JQL (Jira Query Language), Filters, Epics, Dashboards	6					
5	Understanding XP - The XP Life cycle, The XP Team, XP Concepts, Software Configuration Management - Configuration Management Process, Version Control Systems, Change Management and Control	5					

Preso	Prescribed Text Book										
Sl.	Book Title	Authors	Edition	Publisher	Year						
No.											

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

1.	Fundamentals of Software Engineering	Rajib Mall	5th Edition	PHI Learning	2018
2	Agile Foundations: Principles, Practices, and Frameworks	Peter Measey	Fourth	BCS Learning & Development Limited	2015
3	Atlassian Jira Service Desk A Complete Guide	Gerardus Blokdyk	First	S Viswanathan Printers and Publishing Private Limited	2020

Refer	Reference Text Book										
Sl.	Book Title	Authors	Edition	Publisher	Year						
No.											
1.	Essential Scrum: A Practical Guide to the Most Popular Agile Process	Kenneth Rubin	First	Pearson	2017						
2.	The Art of Agile Development	James Shore & Shane Warden	Second	O'Reily	2007						

MOC	MOOC Course										
Sl. No.	Course name	Course Offered By	Year	URL							
1.	Agile Scrum Tutorial: A Step-	Simpli	2024	https://www.simplilearn.com/tutorials/a							
	by-Step Guide for Beginners	learn		gile-scrum-tutorial							
2.	Agile Development	Coursera	2024	https://www.coursera.org/specialization							
	Specialization			s/agile-development							

Course Outcomes

At the end of the course the student will be able to

CO1	Apply the principles of software engineering frameworks and processes.
CO2	Analyze agile practices and software engineering techniques to manage and develop software projects using agile tools.
	Design different software development models and agile practices to select the most effective approach for specific project requirements.

CO-PO-PSO mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3												3	
CO2	3				1						3	3		
CO3		3												3

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	Number of Assessments	Marks
Internals	3	40
QUIZ/AAT	2	10
Tota	50	

SEE Exam Question paper format – 100M

All Units have internal choice - Two Questions to be asked for 20 Marks each

Sem	VI		
Course Title:	Data Warehousing and Data	Mining	
Course Code:	23AI6PEDWD	Total Contact Hours: 40 l	nours
L-T-P:	3-0-0	Total Credits:	3

Unit No.	Topics	Hrs
1	Introduction and Data Preprocessing: Why data mining, what is data mining, What kinds of data can be mined, What kinds of patterns can be mined, Which Technologies Are used, Which kinds of Applications are targeted, Major issues in data mining, Data Preprocessing: An overview, Data cleaning, Data integration, Data reduction, Data transformation and data discretization.	8
	Data warehousing and online analytical processing: Data warehousing: Basic concepts- What Is a Data Warehouse, Differences between Operational Database Systems and Data Warehouses, Why Have a Separate Data Warehouse? Data Warehousing: A Multitiered Architecture	
2	Data Warehouse Models: Enterprise Warehouse, Data Mart, and Virtual Warehouse Extraction, Transformation, and Loading.	8
	Data warehouse modeling: Data Cube: A Multidimensional Data Model Stars, Snowflakes, and Fact Constellations: Schemas for Multidimensional Data Models, Dimensions: The Role of Concept Hierarchies, Measures: Their Categorization and Computation, Typical OLAP Operations. A Business Analysis Framework for Data Warehouse Design, Data Warehouse Design Process.	
	Data Lakes: Introduction to Data Lakes, Data Lake Maturity, Data Puddles, Data Ponds, Creating a Successful Data Lake, The Right Platform, Getting to the data, The Data Swamp, Roadmap to Data Lake Success, Standing Up a Data Lake, Organizing the Data Lake, Setting Up the Data Lake for Self-Service, Data Lake Architectures, Virtualization versus a catalog-based logical data lake	
3	Mining Frequent Patterns, Associations, and Correlations: Market	8
	Basket Analysis: A Motivating Example, Frequent Itemsets, Closed Itemsets, and Association Rules, Apriori Algorithm: Finding Frequent Itemsets by Confined Candidate Generation, Generating Association Rules from Frequent Itemsets, Improving the Efficiency of Apriori, A Pattern Growth Approach for Mining Frequent Itemsets, Mining Frequent Itemsets Using Vertical Data Format, Mining Closed and Max Patterns, Which Patterns Are Interesting?—Pattern Evaluation Methods.	
4	Cluster Analysis: What Is Cluster Analysis? Requirements for Cluster Analysis, Partitioning methods: k-Means: A Centroid-Based Technique, k-	8

	Medoids, Hierarchical Methods: Agglomerative versus Divisive					
	Hierarchical Clustering, BIRCH, Chameleon, Probabilistic Hierarchical					
	Clustering, Density-based methods: DBSCAN, OPTICS, DENCLUE					
	Evaluation of clustering.					
5	Grid-Based Methods: STING: Statistical Information Grid, CLIQUE: An Apriori-like Subspace Clustering Method	8				
	Evaluation of Clustering: Assessing Clustering Tendency, Determining the Number of Clusters, Measuring Clustering Quality.					
	Data mining trends and research frontiers: Mining complex data types, other methodologies of data mining, Data mining applications, Data Mining and society.					

Prescr	ibed Text Book				
Sl.	Book Title	Authors	Editio	Publisher	Year
No.			n		
1.	Data Mining	Jiawei Han	3rd	Elsevier	2012
	Concepts and				
	Techniques				
2.	The Enterprise Big	Alex Gorelik	1 st	O'reilly	2019
	Data Lake:				
	Delivering the				
	Promise of Big				
	Data and Data				
	Science				
Refere	nce Text Book				
Sl.	Book Title	Authors	Editio	Publisher	Year
No.			n		
1.	Introduction to Data	Pang-Ning Tan,		Pearson	2016
	Mining	Michael Steinbach,			
		Anuj Karpatne and			
		Vipin Kumar			

E-B	E-Book							
Sl.	Book	Authors	Editi	Publishe	Year	URL		
No	Title		on	r				
•								
1.	Data	Sartaj Singh	1st	LPU		https://www.lpude.in/SLM		
	Wareho					s/Master%20of%20Compu		
	using					ter%20Applications/Sem_1		
	and					/DECAP446_DATA_WA		
	Data					REHOUSING_AND_DAT		

Mining			A_MINING.pdf

MOOC	Course			
Sl. No.	Course name	Course Offered By	Year	URL
1.	Data Mining	NPTEL	2021	https://onlinecourses.nptel.ac.in/noc21_cs06/pre view
2.	https://ww w.coursera .org/learn/ data- warehousi ng- business- intelligenc e	Coursera	2024	https://onlinecourses.nptel.ac.in/noc24_cs132/preview

Semester	VI		
Course Title:	Video Analytics		
Course Code:	23AI6PEVAL	Total Contact Hours: 4	10 hours
L-T-P:	3-0-0	Total Credits:	3

Unit No.	Topics	Hou rs
1	Getting Started with OpenCV: Introduction to computer vision, Introduction to images, Basic image operations, Mathematical operations on images, Sunglass filter: A simple application, Bitwise operations, Image Annotation. Video IO and GUI: Video IO using HighGUI, Callback functions, Keyboard as input device.	8
2	Binary Image Processing: Thresholding, Erosion / Dilation, Opening and Closing, Connected Component Analysis, Contour Analysis, Blob Detection. Image Enhancement and Filtering: Color Spaces, Color Transforms, Image Filtering, Image Smoothing, Image Gradients.	8
3	Advanced Image Processing and Computational Photography: Hough Transforms, High Dynamic Range Imaging, Seamless Cloning, Image Inpainting. Geometric Transforms and Image Features: Geometric Transforms, Image Features, Feature Matching, Application: Image Alignment, Application: Creating Panorama, Application: Finding Known Objects using OpenCV.	8
4	Image Segmentation and Recognition: Image segmentation using GrabCut, Image Classification, Object Detection. Video Analysis: Motion Estimation using Optical Flow, Application: Video Stabilization, Object Tracking, Object Trackers in OpenCV, Multiple Object Tracking using OpenCV, Kalman Filter, MeanShift and CamShift.	8
5	Deep Learning with OpenCV: Image Classification- Image Classification using Caffe and Tensorflow ,Object Detection - Single Shot Multibox Detector(SSD) , You Only Look Once Detector(YOLO), Face Detection- SSD based Face Detector , Human Pose Estimation-OpenPose.	8

Prescribed Text Book						
Sl.	Book Title	Authors	Edition	Publisher	Year	

No.					
1.	Computer Vision: Algorithms and Applications	Richard Szeliski	2nd Edition	Springer	2021
2.	Multiple View Geometry in Computer Vision	Richard hartley and Andrew Zisserman	2nd Edition	Cambridge University Press	2003
Refere	ence Text Book				
Sl. No.	Book Title	Authors	Edition	Publisher	Year
1.	Computer Vision: A Modern Approach	David Forsyth and Jean Ponce	2nd Edition	Pearson	

E-B	ook					
Sl. No	Book Title	Authors	Editio n	Publishe r	Year	URL
1.	Computer Vision: Algorithms and Applications	Richard Szeliski	2nd Editio n	Springer	2021	http://cv2.csie.ntu.edu.tw/C V2/2023/textbook.pdf
2.	Multiple View Geometry in Computer Vision	Richard hartley and Andrew Zisserman	2nd Editio n	Cambridg e University Press	2003	https://www.r- 5.org/files/books/computer s/algo-list/image- processing/vision/Richard Hartley_Andrew_Zisserma n- Multiple_View_Geometry in_Computer_Vision- EN.pdf

MOO	C Course			
Sl. No.	Course name	Course Offered By	Year	URL
1.	Introduction to Computer Vision and Image Processing	Coursera	2024	https://www.coursera.org/learn/introduction-computer-vision-watson-opency
2.	Deep Learning Application for Computer Vision	Coursera	2024	https://www.coursera.org/learn/deep- learning-computer-vision

Sem	VI		
Course Title:	Augmented Reality and Virtual Reality		
Course Code:	23AI6PEAVR Total Contact Hours: 40 hours		
L-T-P:	3-0-0	Total Credits:	3

Unit No.	Topics	Hrs
1	Introduction to Augmented Reality - Part 1: History of AR, AR Scenarios, the future of AR, Applications of AR. Calibration and Registration: Transformations, Coordinate Systems.	8
2	Introduction to Augmented Reality - Part 2: Projections, Image formation in a pinhole camera, camera calibration, camera calibration techniques, camera calibration tools.	8
3	Pose Estimation and Tracking: Pose Estimation; Pose Tracking in AR, Classification of Tracking, Stationary Tracking Systems, Mobile Sensor-Based Tracking, Optical Tracking, Hybrid Tracking, Marker-Based Tracking and AR, Diminished Reality, Markerless Tracking and AR.	8
4	Display Data with Core UI components in Unity, Responding to user Events for Interactive UIs, Inventory and Advanced UIs	8
5	Playing and Manipulating sounds, Creating 3D Objects, Terrains, Textures and Materials	8

Prescr	ibed Text Book				
Sl.	Book Title	Authors	Edition	Publisher	Year
No.					
1.	Unity 2021	Matt Smith, Shaun	4th	Packt	2021
	Cookbook	Ferns,			
2.	Augmented Reality:	Chetankumar G		McGrawHill	2020
	Theory, Design and	Shetty			
	Development	•			
Refere	nce Text Book		I. I		
Sl.	Book Title	Authors	Edition	Publisher	Year
No.					
1.	Teach Yourself Unity	Mike Gieg, Sams		Pearson	2018
	2018 Game Developmer	nt			
	in 24 Hours				
2.	Augmented Reality for	Jonathan		Packt	2017
	Developers: Build	Linowes,			
	practical augmented reali	2			
	applications with Unity	, Babilinski			
	ARCore, ARKit and				
	Vuforia				

MOC	OC Course			
Sl. No.	Course name	Course Offered By	Year	URL
1.	Augmented Reality Development and its Applications	VTU, TCSiO N	2024	https://online.vtu.ac.in/course-details/Certificate-in-Augmented-Reality-Development-and-its-Applications-TCS-iON-July-2024
2.	Mastering VR: Fundamentals to Practice	NPTEL	2024	https://elearn.nptel.ac.in/shop/iit- workshops/completed/certificate-course-on- fundamentals-of-virtual- reality/?v=c86ee0d9d7ed

Sem	VI		
Course Title:	Digital Image Processing		
Course Code:	23AI6PEDIP Total Contact Hours: 40 hours		
L-T-P:	3-0-0	Total Credits:	3

Unit No.	Topics	Hours		
1	Introduction: Fundamental Steps in Digital Image Processing, Components of an Image	8		
	Processing System, Sampling and Quantization, Representing Digital Images (Data			
	structure), Some Basic Relationships Between Pixels – Neighbors and Connectivity of			
	pixels in image, Applications of Image Processing: Medical imaging, Robot vision,			
	Character recognition, Remote Sensing. Colour Image Processing: Colour			
	Fundamentals, Colour Models, Pseudo-colour Image Processing.			
2	Image Enhancement: Spatial Domain: Some Basic Gray Level Transformations,	8		
	Histogram Processing, Enhancement using Arithmetic/Logic Operations, Basics of			
	Spatial Filtering, Smoothing Spatial Filters, Sharpening Spatial Filters. Frequency			
	Domain: Preliminary Concepts, Filtering in the Frequency Domain, Image Smoothing			
	and Image Sharpening using Frequency Domain Filters.			
3	Restoration: Noise models, Restoration in the Presence of Noise Only using Spatial	8		
	Filtering and Frequency Domain Filtering, Linear, Position-Invariant Degradations,			
	Estimating the Degradation Function, Inverse Filtering, Minimum Mean Square Error			
	(Wiener) Filtering, Constrained Least Squares Filtering			
4	Morphological Analysis: Morphological Image Processing: Preliminaries, Erosion and	8		
	Dilation, Opening and Closing, The Hit-or-Miss Transforms, Some Basic			
	Morphological Algorithms. Representation and Description: Representation, Boundary			
	descriptors.			
5	Image Segmentation: Introduction, Detection of isolated points, Line detection, Edge	8		
	detection, Edge linking, Region-based segmentation – Region growing, Split and			
	merge technique, Local processing, regional processing, Hough transform,			
	Segmentation using Threshold.			
	beginentation asing fineshold.			

Presc	Prescribed Text Book						
Sl.	Book Title	Authors	Edition	Publisher	Year		
No.							
1.	Digital Image	Rafael C G., Woods R E. and	7	Pearson Education	2018		
	Processing	Eddins S L					
2	Digital Image	Jayaraman S, Veerakumar T,	1	Thomson Press	,		
1	Processing	Esakkirajan S		India Ltd	2017		

Reference Text Book					
Sl.	Book Title	Authors	Edition	Publisher	Year

No.					
1.	Fundamentals of Digital	Anil K. Jain	2	Prentice Hall	2015
	Image Processing				
2.	Digital Image Processing	S. Sridhar	2	Oxford	2016
				University Press	

MO	OC Course			
Sl. No.	Course name	Course Offered By	Year	URL
1.	Fundamentals of Digital Image and Video Processing	Coursera	2024	https://www.coursera.org/learn/digital
2.	Digital Image Processing	Indian Institute of Technology, Kharagpur and NPTEL	2024	https://www.classcentral.com/course/swayam-digital-image-processing-14005

Semester	VI		
Course Title:	Competitive Programming	9	
Course Code:	23DS6AECPG	Total Contact Hours: 2	24 hours
L-T-P:	0-0-1	Total Credits:	1

	Programming Challenges on the topics listed below	Hou				
		rs				
1	Getting Started : Programming Fundamentals					
2	Arithmetic & Algebra	2				
3	Sorting and Searching Algorithms	2				
4	Tree Queries	2				
5	Range Queries	2				
6	Divide and Conquer	2				
7	Greedy Algorithms - I	2				
8	Greedy Algorithms - II	2				
9	Dynamic Programming - I	2				
10	Dynamic Programming - II	2				
11	Graph Algorithms	2				
12	String Algorithms	2				

Presci	ribed Text Book			
Sl.	Book Title	Authors	Publisher	Year
No.				
1.	Competitive	Christoph Dürr and Jill-	Cambridge	2021
	Programming in	Jênn Vie	University Press	
	Python: 128			
	Algorithms to			
	Develop Your			
	Coding Skills			
2.	Guide to	Antti Laaksonen	Springer	2017
	Competitive		1 0	
	Programming			
Refer	ence Text Book			
Sl.	Book Title	Authors	Publisher	Year

No.				
1.	Introduction to Algorithms	Thomas H . Cormen, Charles E. Leiserson	MIT Press	2022
2.	Programming Challenges	Steven S. Skiena Miguel A. Revilla	Springer	2003

E-B	ook				
Sl. No	Book Title	Authors	Publisher	Year	URL
1.	Competitive Programming 3	Steven Halim, Felix Halim	Lulu	2013	https://files.gitter.im/SamZ hangQingChuan/sam/DA1g /Steven-HalimFelix- Halim-Competitive- Programming-3The- New-Lower-Bound-of- Programming-Contests- Lulu.com2013pdf
2.	Algorithms	Jeff Erikson	-	2019	https://jeffe.cs.illinois.edu/teaching/algorithms/

MOOC	MOOC Course						
Sl. No.	Course name	Course Offered By	Year	URL			
1.	Getting started with Competitive Programming	NPTEL	2024	https://onlinecourses.nptel.ac.in/noc2 4_cs103/preview			
2	Competitive Programming Essentials, master Algorithms	Udemy	2024	https://www.udemy.com/course/com petitive-programming-algorithms- coding-minutes/			

Semester	VI		
Course Title:	OOPs with JAVA		
Course Code:	23AI6AEOOJ	Total Contact Hours: 2	20 hours
L-T-P:	0-0-1	Total Credits:	1

	Program Details					
1	Create a class to represent a bank account with data members: Account no, Account holder name, Address and Balance amount. Create member methods to assign initial value to the account, deposit an amount, withdraw an amount after checking balance and display account holders name and balance. Write a main method for the above class that reads the initial values from the keyboard and invokes the appropriate methods.					
	Create a class named RetailItem that holds data about an item in a retail store. The class should have the following fields:					
2	 Description - The description field references a String object that holds a brief description of the item. Units - The units field is an int variable that holds the number of units currently in inventory. Price - The price field is a double that holds the item's retail price. 					
	Write a constructor that accepts arguments for each field, appropriate mutator methods that store values in these fields, and accessor methods that return the values in these fields. Write the main method which creates three RetailItem objects and invokes appropriate methods.					
3	Write a program in java to define a class Shape which has data members and a member function showArea(). Derive two classes Circle and Rectangle from Shape class. Add appropriate data members and member functions to calculate and display the area of Circle and Rectangle.					
4	Write a program that has an Interface I which is extended by I1 and I2. Interface I12 inherits from both I1 and I2. Each interface declares one constant and one method. Class DemoI implements I12. Instantiate DemoI and invoke each of its methods. Each method displays one of the constants.					
5	Define Create a package named mypack, containing a class AreaTriangle in which a method Area() finds area of a triangle and returns area. Import this package in another class Triangle which is in package mypack1. The Triangle class invokes the Area() method from mypack and displays the area of triangle. Member variables can be considered as per the program requirement					

6	Create a base class called "Father" and derived class called "Son" which extends the
	base class. In Father class, implement a constructor which takes the age and throws
	the exception WrongAge() when the input age<0. In Son class, implement a
	constructor that checks both father and son's age and throws an exception if son's
	age is >= father's age.
7	Consider a bank offering online access to its customers to perform transactions.
/	Suppose there are two transactions of deposit and withdrawal for a particular
	account simultaneously which leads to race condition. Develop a solution to avoid
	unpredictable situations with a program.
0	Implement a class that checks whether a given number is a prime using both the
8	Thread class and Runnable interface.
	Write a program to copy the content of File1.txt to another file File2.txt. by
9	reading the file name as command line arguments.
10	Illustrate the following string operations using String object.
10	i) Difference of equals() method and == operator
	ii) Check whether the string is palindrome or not
	To convert the string into character array
	Create a Class Gen which implements a stack using generics. Ensure that the
11	stack never overflows and the main method would invoke the stack methods in class
	Gen by passing integer and floating-point numbers.
	Write a program to create a new array list, add some colors (string) and perform the
12	following operations:
	i.Add elements of List to ArrayList
	i.Copy ArrayList to Array i.Reverse
	ArrayList content
	.Get Sub list from an ArrayList.
	.To sort a given ArrayList
L	1

Pres	cribed Text Book				
Sl. No.	Book Title	Authors	Edition	Publisher	Year
1.	Java : The Complete Reference	Herbert Schildt	11th Edition	McGraw-Hill Education	2018
2.	Programming with Java A Primer	E.BalaGuru Swamy	6 th Edition	McGraw-Hill Education	2014
Refe	rence Text Book	I	L	ı	1
Sl. No.	Book Title	Authors	Edition	Publisher	Year
1.	Introduction to Java Programming	Y. Daniel Liang	11 th Edition	Pearson	2017

2.	Object Oriented Programming	Rajkumar Buyya,	1st Edition	Tata McGraw	2009
	with Java: Essentials and	Thamarai Selvi,		Hill Education	
	Applications	Xing			

E-Book							
Sl. No.	Book Title	Authors	Edition	Publisher	Year	URL	
1.	The Art and science of Java	Eric S. Roberts	-	Greg Tobin	2007	http://people.reed.edu/ ~jerry/121/materials/ artsciencejava.pdf	
2.	Java Program ming	Wikibooks Contributors	7th Edition	wikibooks.o rg	2016	https://upload.wikimedia.org/wikipedia/commons/e/e7/Java_Programming.pdf	

MOO	MOOC Course					
Sl. No.	Course name	Course Offered By		URL		
1.	Object Oriented Programming in Java Specialization	Coursera		https://www.coursera.org/specializations/object- oriented-programming		
2.	Introduction to Java	Courser a	2024	https://www.coursera.org/learn/java-introduction		

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

Sem	VI	
Course Title:	DevOps	
Course Code:	23DSAEDOP	Total Contact Hours: 2 hours/week
L-T-P:	0-0-1	Total Credits: 1

A Introduction:

This course develops skills in DevOps practices, including CI/CD, infrastructure as code, configuration management, and containerization.

Students will develop a DevOps pipeline using technologies such as Jenkins, Docker, Kubernetes, Ansible, Terraform, and cloud platforms like AWS, GCP, or Azure. Groups should consist of 2 to 4 students.

The teacher allotted for project work should teach DevOps technologies like Jenkins, Docker, Kubernetes, etc., during Class/Lab hours as per the allotment. The teacher allotted for project work should guide the students in choosing the project topic and in carrying out the project work, as well as completing the evaluation of assigned students.

C Assessment Plan (for 50 marks of CIE)

Tool	Remarks	Marks
Lab Test	2	20
Project Reviews	2	30
Total		50

Laboratory Plan:

Project Topics:

E-commerce Platform with CI/CD Pipeline, Social Media Analytics Dashboard, Online Learning Management System, Real-time Chat Application, Personal Finance Management App, Content Management System (CMS), Smart Home IoT Dashboard, Healthcare Appointment Booking System, Weather Forecasting Application, Online Voting System

Note: Apart from the above-mentioned project topics if student groups come up with any innovative project ideas which are useful for the Department / College academic purpose will be considered based on the approval and acceptance from class teacher.

Wee	Activity	Content Delivered by	Technologies/Skills to be
k		Assigned Teacher	Covered
1	Lecture and discussion,	Introduction to DevOps, History	DevOps Fundamentals, Group
	Formation of groups,	and evolution of DevOps, Key	Collaboration, Lab Setup
	Basic setup of a lab	concepts and principles, DevOps	
	environment	lifecycle, Importance and	
		benefits of DevOps, Group	
		Formation, Lab Setup	

3	Hands-on exercises with Git, Creating and managing a repository Installing Docker, Creating and running Docker containers	Introduction to version control, Basic Git commands (clone, commit, push, pull), Branching and merging, Using GitHub for collaboration, Git Repository Management Introduction to containers, Docker architecture and components, Basic Docker	Git, Version Control, GitHub Containerization, Docker
		commands (build, run, images), Dockerfile and containerization of applications, Docker Container Management	
4	Setting up a Kubernetes cluster, Deploying a sample application	Introduction to container orchestration, Kubernetes architecture, Basic Kubernetes objects (pods, services, deployments), Deploying applications on Kubernetes, Kubernetes Application Deployment	Container Orchestration, Kubernetes
5	Jenkins installation and setup, Configuring a simple CI pipeline	Introduction to CI/CD, Setting up Jenkins, Creating and running basic Jenkins jobs, Integrating Jenkins with GitHub, CI Pipeline Configuration	Continuous Integration, Jenkins, CI/CD Pipeline
6	Installing and configuring Ansible, Writing simple playbooks	Introduction to configuration management, Basics of Ansible, Writing and running Ansible playbooks, Managing infrastructure with Ansible, Ansible Playbook Creation	Configuration Management, Ansible
7	Installing Prometheus and Grafana, Configuring basic monitoring and alerts	Importance of monitoring and logging in DevOps, Introduction to Prometheus and Grafana, Setting up monitoring with Prometheus, Visualizing metrics with Grafana, Prometheus and Grafana Configuration	Monitoring, Prometheus, Grafana
8	Installing Terraform, Creating and applying Terraform scripts	Introduction to IaC, Basics of Terraform, Writing and applying Terraform configurations, Managing infrastructure with Terraform, Terraform Scripting	Infrastructure as Code, Terraform
9	Setting up security scanning tools, Running security scans	Introduction to DevSecOps, Security best practices in DevOps, Tools for security	DevSecOps, Security Scanning

	on applications	scanning (e.g., OWASP ZAP, Snyk), Integrating security into	
		CI/CD pipelines, Security	
		Scanning Procedures	
10	Setting up an account	Overview of cloud computing,	Cloud Computing,
	on a chosen cloud	Introduction to	AWS/GCP/Azure, Cloud
	provider, Deploying a	AWS/GCP/Azure (choose one),	Deployment
	simple application on	Using cloud services in DevOps	
	the cloud	workflows, Cloud Application	
		Deployment	
11	Groups work on their	Project Work	Project Management, DevOps
	DevOps projects		Practices
12	Project presentations	Presentation of Projects, Project	Presentation Skills,
	and demonstrations by	Report Submission	Documentation, Project
	each group,		Showcase
	Submission of project		
	reports		

Text	Book			
SL. No	Book Title	Authors	Edition	Year
1	The DevOps Handbook: How to Create World-Class Agility, Reliability, & Security in Technology Organizations	Gene Kim, Patrick Debois, John Willis, and Jez Humble	1st Edition	2016
2	DevOps for Dummies	Emily Freeman	1st Edition	2019
Refe	rence Text Book			
SL. No	Book Title	Authors	Edition	Year
1	DevOps: A Software Architect's Perspective	Len Bass, Ingo Weber, and Liming Zhu	1 st Edition	2015

E-Book				
SL No	Authors	Author	Edition	URL
1	The DevOps Handbook	Gene Kim, Patrick Debois, John Willis, and Jez Humble	1st Edition	https://dl.faghatketab.ir/Books/C omputer/Programming/WebProg ramming/The.DevOps.Handbook _faghatketab.ir.pdf

MOOC Course				
SL No	Course Name	Course Offered By	Year	URL
1	DevOps for Software Development – IIT Madras	NPTEL	2021	https://nptel.ac.in/courses/128106012

Autonomous Institute, Affiliated to VTU
DEPARTMENT OF Artificial Intelligence & Data Science

Sem	VII	
Course Title:	Entrepreneurship	& Project Management
Course Code:	23DC7PCEPM	Total Contact Hours: 2
L-T-P:	2-0-0	Total Credits: 2

Unit No.	Topics	Hrs.
1	The Entrepreneurial mind-set: The nature of entrepreneurship, How Entrepreneurs Think, Entrepreneur background and characteristics. Reasons for interest in corporate entrepreneurship, Sustainable Entrepreneurship, Generation of new entry opportunity, Entry strategy for new entry exploitation, Risk reduction for new entry exploitation.	5
2	Creativity and the business idea: Sources of New Ideas, Methods of Generating Ideas, Creative Problem Solving. Innovation: Innovation, Opportunity recognition, Product planning and development process, Ethics: Factors that Shape Trust in Business and Innovation Ecommerce and business start-up, international v/s domestic entrepreneurship, Entrepreneurial entry strategies, Legal issues in setting up the organization.	5
3	Project Management: concept of project management attributes of a project, project management systems, project life cycle, Difference among Projects, Routine Activities and Programs, responsibilities and qualities of a project manager, project management team-composition, functions and responsibilities, co-ordination procedures.	5
4	Project Planning: Work Breakdown Structure, Types of Work Breakdown Structure, Planning Framework and Its Importance. Project Formulations and Planning: Private commercial criteria for project choice, feasibility, marketing feasibility, Financing for Projects and financial feasibility, Preparation of techno-economic feasibility report.	5
5	Project Identification: Principles of project identification, Project Implementation. Brief outline of social cost benefit analysis: rationale, UNIDO and little Mirrlees approaches, UNIDO IDCAS manual. Project appraisal: time value of money, project appraisal techniques: Non discounting criteria, discounting criteria, appraisal and selection in practice, payback period, accounting rate of return, net present value, internal rate of return, benefit cost ratio, social cost benefit analysis, effective rate of protection, risk analysis: measures of risk, sensitivity analysis, simulation analysis, decision tree analysis.	5

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

Preso	Prescribed Text Book							
Sl. No.	Book Title	Authors	Edition	Publisher	Year			
1.	Entrepreneurship	Robert D. Hisrich, Michael P. Peters, Dean A. Shepherd	10th	McGrawHill Education	2017			
2	Effective Project Management	James P Clements, Jack Gido	4 th	South Western	2009			

E-Book	E-Book						
Sl. No.	Book Title	Authors	Edition	Publisher	Year	URL	
1.	Entrepreneursh ip: The Practice and Mindset (3rd)	Heidi M. Neck, Christopher P. Nec k, Emma L. Murray	3rd	SAGE Publications	2023	https://www.barnes andnoble.com/	
2.	The Handbook of Project Management	Martina Huemann & Rodney Turner	6th	Routledge	2024	https://rpitst.com/i mg/ebook/1711029 511_630733f4881 72765377f.pdf	

Referer	nce Text Book				
Sl. No.	Book Title	Authors	Edition	Publisher	Year
1.	Project Management: The	Gray, Clifford F.,	8th	McGraw Hill	2020
	Managerial Process	Larson, Eric W., and	edition	Education	
		Desai, Gautam V			
2.	Project Management and	Kharua, Sitangshu	7th	Oxford Press	2011
	Appraisal		edition	University	

MOO	C Course			
Sl. No.	Course name	Course Offered By	Year	URL
1.	Project management	SWAYAM/ NPTEL	2025	https://nptel.ac.in/courses/110107081
2.	Entrepreneurship Management	SWAYAM/ NPTEL		https://onlinecourses.swayam2.ac.in/cec2 4_mg28/preview

SEE Exam Question paper format:

Each unit will cover two questions for 20 marks and students can choose any one full question.

Autonomous Institute, Affiliated to VTU

Semester	VII			
Course Title:	Robotic Process Automation			
Course Code:	23AI7PCRPA/ 23AI8PCRPA	Total Contact Hours: 4	10 hours	
L-T-P:	3-0-0	Total Credits:	3	

Unit	Topics	Hour
No.		S
1	Introduction: Introduction to Robotic Process Automation. Scope and Techniques of Automation: Process to be automated. Techniques of automation.	8
	Robotic Process Automation: Tasks RPA can perform, Benefits of RPA, Components of RPA, RPA platforms, The future of Automation. Record and Play: About RPA IDE, Downloading and Installing IDE, IDE Stack, Learning IDE, Task Recorder, Emptying trash in Gmail, Emptying Recycle Bin.	
2	Sequence, Flowchart and Control Flow : Sequencing the Workflow, Activities, Control flow, various types of loops, and decision making, how to use a sequence, how to use a flowchart, step by step example using sequence and control flow.	8
	Data Manipulation : Variables and scope, Collections, Arguments-purpose and use, Data table usage with examples, Clipboard management, File operation with step-by-step example. CSV/Excel to data table and vice versa examples.	
3	Taking control of the controls: Finding and attaching windows, Finding the control, Techniques for waiting for a control, Act on controls-mouse and keyboard activities, working with RPA IDE explorer, Handling events, Revisit recorder, Screen scraping, Uses of OCR, Types of OCR available, How to use OCR?, Avoiding typical failure points.	8
	Tame that Application with Plugins: Mail plugin, PDF plugin, web integration, Excel and Word plugins, Credential management.	
4	Handling User Events and Assistant Bots: Assistant bots, Monitoring system event triggers, Monitoring image and element triggers, Launching an assistant bot on a keyboard event.	8
	Exception Handling, Debugging, and Logging Exception handling: Common exceptions and ways to handle them, Logging and taking screenshots, Debugging techniques, Collecting crash dumps, Error reporting.	

Autonomous Institute, Affiliated to VTU

5	Managing and Maintaining the Code: Project Organization, Nesting	8
	workflows, Reusability of workflows, Commenting techniques, State	
	Machine, Appropriate usage of Flowcharts, State Machines or sequences,	
	Using config files and examples of a config file.	
	Deploying and Maintaining the Bot: Publishing using publish utility,	
	Overview of Orchestration Server, Using Orchestration Server to control	
	bots, Using Orchestration Server to deploy bots.	

Pres	scribed Text Book				
Sl.	Book Title	Authors	Edition	Publisher	Year
No					
1.	Learning Robotic	Alok Mani Tripathi	1st	Packt	2018
	Process Automation				
Refe	erence Text Book				
Sl.	Book Title	Authors	Edition	Publisher	Year
No					
1.	The Robotic Process	Tom Taulli	1st	A Press	2020
	Automation Handbook:				
	A Guide to				
	Implementing RPA				
	Systems				
2.	Introduction to Robotic	Frank Casale, Rebecca Dilla,			
	Process Automation: a	Heidi Jaynes, Lauren			
	Primer	Livingston			

E-B	ook					
Sl.	Book Title	Authors	Edition	Publisher	Yea	URL
No.					r	
1 https://www.uipath.com/rpa/robotic-process-automation						
2	https://www.pa	cktpub.com	/product/le	earning-roboti	c-proce	ess-automation/9781788470940

MOC	OC Course			
Sl. No.	Course name	Course Offered By	Year	URL
1	Robotic Process Automation	UiPath Academy	2025	https://www.uipath.com/learning/video- tutorials
2	UiPath RPA	Guru99	2025	https://www.guru99.com/uipath-tutorial.html

Autonomous Institute, Affiliated to VTU
DEPARTMENT OF Artificial Intelligence & Data Science

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks
Internals	3	40
QUIZ/AAT	1	10
Tot	50	

SEE Exam Question paper format:

Each unit will cover two questions for 20 marks and students can choose any one full question.

Autonomous Institute, Affiliated to VTU

Semester	VII		
Course Title:	Bio-inspired Algorithms		
Course Code:	23DC7BSBIO	Total Contact Hours:	2
L-T-P:	0-0-1	Total Credits:	1

	Course Content
1	Introduction to Evolutionary Algorithms and Optimization Terminology, Different Types of Optimization, Hill Climbing, Intelligence, Genetic Algorithms, Mathematical Models of Genetic Algorithms
2	Recent Evolutionary Algorithms-1 Simulated Annealing, Ant Colony Optimization, Particle Swarm Optimization, Differential Evolution
3	Recent Evolutionary Algorithms-2 Biogeography-based Optimization, Cultural Algorithms, Opposition-based Learning, The Firefly Algorithm, Bacterial Foraging Optimization
4	Combinatorial Optimization Travelling Salesman Problem (TSP), TSP Initialization, TSP Representation and Crossover, TSP Mutation, Graph Coloring Problem
5	Recent Trends in the Domain of Bio-inspired Algorithms

	Lab Programs						
1	Genetic Algorithm for Function Optimization Objective: Maximize or minimize a mathematical function using a genetic algorithm. Concepts Covered: Initialization, selection, crossover, mutation, fitness function.						
2	Hill Climbing Algorithm for N-Queens Problem Objective: Solve the N-Queens problem using a basic Hill Climbing approach. Concepts Covered: Local search, steepest ascent, fitness evaluation.						
3	Simulated Annealing for Traveling Salesman Problem (TSP) Objective: Minimize the TSP path using simulated annealing. Concepts Covered: Temperature schedule, acceptance probability, path cost evaluation.						
4	Ant Colony Optimization for TSP Objective: Solve TSP using Ant Colony Optimization (ACO). Concepts Covered: Pheromone update, path selection, evaporation rate.						
5	Particle Swarm Optimization for Global Minima Objective: Find the global minimum of a function using Particle Swarm Optimization (PSO). Concepts Covered: Velocity update, position update, pBest and gBest.						
6	Differential Evolution for Function Optimization Objective: Use Differential Evolution (DE) to find the minimum of a benchmark function. Concepts Covered: Mutation, crossover, selection strategies.						

Autonomous Institute, Affiliated to VTU

7	Tabu Search for Job Scheduling Problem Objective: Minimize job completion time using Tabu Search. Concepts Covered: Tabu list, aspiration criteria, neighborhood generation.
8	Biogeography-Based Optimization (BBO) for Benchmark Function Objective: Apply BBO to solve optimization problems. Concepts Covered: Habitat suitability index, migration, mutation
9	Firefly Algorithm for Unconstrained Function Optimization Objective: Use the firefly algorithm to optimize a multimodal function. Concepts Covered: Light intensity, attractiveness, randomization.
10	Graph Coloring using Genetic Algorithm Objective: Minimize colors used in coloring a graph using a GA approach. Concepts Covered: Chromosome encoding, constraint satisfaction, mutation strategies.

Presc	Prescribed Textbook						
Sl. No.	Book Title	Authors	Edition	Publisher	Year		
1.	Nature-Inspired Optimization Algorithms	A Vasuki	1 st Edition	CRC Press, Taylor & Francis Group	2020		
2.	Evolutionary Optimization Algorithms by	Dan Simon	1 st Edition	John Wiley & Sons, Inc.	2013		
Refer	rence Text Book						
Sl. No.	Book Title	Authors	Edition	Publisher	Year		
1.	Introduction to Evolutionary Computing	A. E. Eiben and J. E. Smith	2 nd Edition	Springer-Verlag Berlin Heidelberg	2015		
2.	Ant Colony Optimization - Techniques and Applications	Helio J.C. Barbosa	1 st Edition	Intech	2013		
3.	Swarm Intelligence: Principles, Advances, and Applications	Aboul Ella Hassanien and Eid Emary	1 st Edition	CRC Press, Taylor & Francis Group	2016		

E-Bo	E-Book							
Sl.	Book Title	Authors	Editi	Publish	Yea	URL		
No.			on	er	r			
1.	Bio-inspired Algorithms	Sándor Szénási, Gábor Kertész	-	MDPI	202 5	https://www.mdpi.com/boo ks/reprint/11135-bio- inspired-algorithms		

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

2.	Genetic Algorithms in	David E	-	Addison	198	https://www2.fiit.stuba.sk/
	Search, Optimization,	Goldberg		-Wesley	9	~kvasnicka/Free%20books/
	and Machine					Goldberg_Genetic_Algorit
	Learning					hms_in_Search.pdf

MO	MOOC Courses						
Sl. No.	Course name	Course Offered By	URL				
1.	Biology Meets Programming: Bioinformatics for Beginners	Coursera	https://www.coursera.org/learn/bioinformatics				
2.	Bio-inspired Artificial Intelligence Algorithms	Udemy	https://www.udemy.com/course/bio-inspired-artificial-intelligence-algorithms-for-optimization/?srsltid=AfmBOoojXI8gwKeva_6V2L4 I_28nKrWUrppVThwTINde3ne5WCWJUehn&coup onCode=NVDIN35				

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks
Internals	-	-
QUIZ/AAT	-	-
Lab Component	-	50
	50	

Autonomous Institute, Affiliated to VTU
DEPARTMENT OF Artificial Intelligence & Data Science

Sem	VIII			
Course Title:	Block Chain Technology			
Course Code:	23DS8PEBCT /23DS7PEBCT	Total Contact Hours: 40 ho	ours	
L-T-P:	3-0-0	Total Credits:	3	

Unit No.	Topics					
1	Blockchain Essentials: The history of Blockchain and Bitcoin, The Growth of Blockchain Technology, Blockchain- Definition, Architecture, Generic elements of a Blockchain, Benefits, Features and Limitations, Types of Blockchain, Consensus. Decentralization: Decentralization using Blockchain, Decentralized Applications					
	Cryptographic Constructs in Blockchain: Cryptographic primitives- Hash function, ECC Digital Signature, Zero Knowledge proof, Different types of digital signatures.					
2	Applications of Cryptographic Hash Functions: Merkel Trees, Patricia Trees, Distributed Hash Table.					
	Consensus Algorithms: Introducing the Consensus Problem, Analysis and Design, Classification, Algorithms(Raft,Paxos,PBFT), Choosing an Algorithm.					
3	Bitcoin: Overview, Cryptographic Keys, Bitcoin Network, Wallets, Bitcoin Payments, Innovation in Bitcoin, Alternative coins- Introduction, Theoretical Foundations- Alternative Proof of Work.	8				
	Transactions : Transaction Life Cycle, Genesis block, Mining					
	Ethereum : An Overview, Ethereum Network, Components of Ethereum Ecosystem, Ethereum Virtual Machines	8				
4	Smart Contracts: History, Definition, Deploying Smart Contracts.					
	Decentralized Applications(DApp), A Basic DApp Example					
	Hyperledger: Architecture, Projects under Hyperledger, Hyperledger Fabric					
5	Tokenization: Tokenization on a blockchain, Types of tokens, Process of Tokenization, Token offerings	8				

Prescribed Text Book:

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

Sl. No.	Book Title	Authors	Edition	Publisher	Year
1	Mastering Blockchain	Imran Bashir	3rd	Packt	2020
	Mastering Ethereum	Andreas M.	First		
2	Building Smart Contracts	Antonopoulos and Dr.	Edition	O'Reilly	2018
	and DApps	Gavin Wood	Lattion		

Reference Text Book:

Sl. No.	Book Title	Authors	Edition	Publisher	Year
1	Mastering Blockchain	Melanie Swan	3rd	O'Reilly	2014
2	Blockchain Applications: A Hands-On Approach	Arshdeep Bahga, Vijay Madisetti	7th	A Press	2019

MOOC Course:

Sl. No.	Course Name	Course Offered by	URL
1	Blockchain Specialization Course 1: Blockchain Basics Course 2: Smart contracts Course 3: Decentralized Applications	Coursera	https://www.coursera.org/spe cializations/blockchain
2.	Blockchain architecture, Design and Use cases	NPTEL	https://nptel.ac.in/courses/10 6/105/106105184/

Proposed Assessment Plan (for 50 marks of CIE)

Tool	Remarks	Marks
Internals	3	40
QUIZ/AAT	2	10
Tot	al	50

SEE Exam Question paper format:

Each unit will cover two questions for 20 marks and students can choose any one full question.

Autonomous Institute, Affiliated to VTU

Sem	VIII		
Course Title:	Quantum Machine Learnin	ng	
Course Code:	23DS8PEQML /23DS7PEQML	Total Contact Hours	s: 40 hours
L-T-P:	3-0-0	Total Credits:	3

Unit No.	Topics	Hours
1	Introduction and overview: History of quantum computation, Quantum bits (Qubit), Quantum Gates	8
	Quantum Machine Learning: Introduction to Quantum Machine Learning, Quantum Machine Learning for Quantum Data, A Taxonomy of Quantum Machine Learning, Characteristics of Quantum Machine Learning Methods, The four big families of quantum machine learning.	
	Quantum Algorithms: Deustch Jozsa, Grover's Algorithm	
	CASE studies: Deutsch-Jozsa Algorithm for Database Validation, Grover's Algorithm for Password Recovery	
2	Quantum Kernel Methods: The general idea behind quantum support vector machines, Quantum Feature maps.	8
	Quantum support vector machines in PennyLane : Setting the scene for training a qSVM , Penny Lane and scikit-learn, Reducing the dimensionality in qSVM , Implementing and using custom feature map	
	Hybrid quantum neural networks (QNN): Definition of hybrid QNNs, Hybrid QNNs construction CASE studies- qSVM for Iris Classification Custom Feature Map for qSVM in Credit Risk Assessment	
3	Hybrid architectures- Using PennyLane: Setting things up for a binary classification problem, Training the model.	8
	A multi-class classification problem: A general perspective on multi- class classification tasks, Implementing a QNN for a ternary classification problem	
4	Quantum-Inspired Machine Learning: Tang's Quantum-Inspired Algorithm for Recommendation Systems, Quantum-Inspired Data Clustering, Quantum-Inspired Gravitational Search. Quantum Enhanced Machine Learning: Algorithms for Linear Algebra, Algorithms for Regression, Algorithms for Clustering,	8
	Algorithms for Nearest Neighbor Search, Quantum Principal Component Analysis (qPCA), Algorithms for Classification, Quantum Boosting	

Autonomous Institute, Affiliated to VTU

5	Applications of QML: Quantum Finance, Quantum Chemistry and	8
	Drug Discovery, Pattern Recognition and NLP, Image Classification	
	(with QML)	
	Tools and Frameworks: Case Study on Qiskit, Pennylane, IBM	
	Quantum Lab	
	Quantum Generative Adversarial Networks: Case study on quantum	
	GANs (QGANs) in Qiskit	
	Challenges & Future Research Directions: Scalability, noise	
	mitigation, quantum advantage	

Presci	ribed Text Book				
Sl.	Book Title	Authors	Editio	Publisher	Year
No.			n		
1.	A Practical Guide to	Elías F. Combarro	1st	Packt Publishing	2023
	Quantum Machine	Samuel González-		Ltd.	
	Learning and	Castillo			
	Quantum				
	Optimization				
2.	Quantum Machine	Christian	1 st	Federal Office for	2022
	Learning State of	Bauckhage,		Information	
	the Art and Future	Fraunhofer IAIS		Security	
	Directions				
Refere	ence Text Book			<u>l</u>	
Sl.	Book Title	Authors	Editio	Publisher	Year
No.			n		
1.	An Introduction to	Osvaldo Simeone		Boston — Delft	2022
	Quantum Machine				
	Learning for				
	Engineers				

E-B	E-Book						
Sl.	Book	Authors	Editio	Publishe	Yea	URL	
No	Title		n	r	r		
•							
1.	Hands-	Dr.		PYQML	2021	https://stel.asu.cas.cz/~skoda/QML/D	
	On	Frank				r.%20Frank%20Zickert%20-	
	Quantu	Zickert				%20Hands-	
	m					On%20Quantum%20Machine%20Le	
	Machine					arning%20With%20Python%20Volu	
	Learnin					me%201_%20Get%20Started-	
	g With					PYQML%20%282021%29.pdf?utm_	
	Python					source=chatgpt.com	

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

MO	MOOC Course					
Sl. No	Course name	Course Offered By	Year	URL		
1.	Quantum Computing and Quantum Machine Learning	Udemy	2021	https://www.udemy.com/course/qu antum-computing-and-quantum- machine-learning-part- 1/?srsltid=AfmBOoq1gXz5vGOz8I 1Wi207Y3SM9HgQxgGWrAZ6njb xKO8RTBtXP6zu		

Proposed Assessment Plan (for 50 marks of CIE)

Assessment Tool	No. of Assessments	Marks
Internals	3	40
QUIZ/AAT	2	10
To	otal	50

SEE Exam Question paper format:

Each unit will cover two questions for 20 marks and students can choose any one full question.

Sem	VIII		
Course Title:	Machine Learning Operation	s MLOps	
Course Code:	23DS8PEMLO /23DS7PEMLO	Total Contact Hours: 40 h	nours
L-T-P:	3-0-0	Total Credits:	3

Unit No.	Topics	Hour
		S
1	Introduction to MLOps: MLOps Hierarchy - Maslow's hierarchy, ML	8
	engineering hierarchy, Implementation of DevOps, Steps involved in migration	
	from DevOps to MLOps, DataOps and Data Engineering, MLOps -MLOps	
	Feedback Loop, Machine learning model targets, Build an MLOps Pipeline from	
	Zero, MLOps standards and best practices	
	The MLOps Workflow: MLOps model lifecycle, Risks handled by MLOps	
	workflow, Case Study: Real-World Example - The Story of Two Companies with	
	(& without) MLOps Workflow,	
2	Quantifying success of MLOps project: Steps to get started, Role of ML in	8
	your organisation, Objectives and Metrics, Actors in MLOps. MLOps Industrial	
	Revolution	
	The MLOps Toolchain: Model and Data Exploration, Metrics and Model	
	Optimization, Productionalization - End to End Pipelines , Feature Stores ,	
	Testing, Deployment and Inferences.	

Autonomous Institute, Affiliated to VTU

3	MLOps for Containers and Edge Devices - Overview of the needs and	8
	challenges	
	Containers: Container Runtime, Creating and Running Container	
	Edge Devices: Coral, Azure Percept, TFHub	
	Containers for Managed ML Systems: Containers in Monetizing MLOps, Build	
	Once , Run many MLOps workflow	
4	From Development to Production in MLOps: Developing Models (Theory vs.	8
	Practice), ML algorithms and their MLOps challenges, Feature selection impact on	
	MLOps, Adaptation from Development to Production Environments, The Purpose	
	of Model Validation, Deploying to Production, CI/CD Pipelines,ML artifacts: what	
	and why Testing pipelines.	
5	Manitoring and Faulhack I can Hudaustanding Madel Daggedation Junet Deit	8
3	Monitoring and Feedback Loop: Understanding Model Degradation, Input Drift	8
	Detection & Techniques, The Feedback Loop	
	MI One Toole . At Plotforms on Kubernates - Kubeflow - MI One Frameworks	
	MLOps Tools : AI Platforms on Kubernetes - Kubeflow , MLOps Frameworks - teraflow	
	Governance and Industrial Use Cases: Introduction to Model Governance in	
	MLOps, Key Elements of Responsible AI, A Template for MLOps Governance.	
	Real-World MLOps Applications: Case Study 1 : Credit Risk – Bias handling and	
	deployment. Case Study 2: Recommendation Engines – Personalization,	
	scalability, monitoring.	

Presc	Prescribed Text Book						
Sl. No.	Book Title	Authors	Edition	Publisher	Year		
1	Practical MLOps - Operationalizing Machine Learning	Noah Gift and Alfredo Deza	1st	O'Reilly	2021		
2	Introducing MLOps- How to scale Machine Learning in the enterprise	Mark Treveil and the dataiku Team	1st	O'Reilly	2021		
Refer	rence Text Book						
Sl. No.	Book Title	Authors	Edition	Publisher	Year		
1	Machine Learning Engineering in Action	Ben Wilson	1st	Manning Publications	2022		
2	Designing Machine Learning Systems- An Iterative Process for Production-Ready Applications	Chip Huyen	1st	O'Reilly	2022		

E-B	E-Book						
Sl					Yea		
N	Book Title	Authors	Edition	Publisher	r ea	URL	
0.							

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science

Ī	1	Practical MLOps -	By Valohai,	V	Valohai ,	https://valohai.com/mlo
		How to get ready for	Sigopt, Tecton	S	Sigopt,	ps-ebook/
		Production Mode]	Tecton	

MO	MOOC Course						
Sl. No.	Course name	Course offered by	Year	URL			
1	MLOps Machine Learning Operations Specialization	Coursera - Duke University	2024	https://www.coursera.org/specializations/m lops-machine-learning-duke#outcomes			
2	Machine Learning Operations (MLOps): Getting Started	Coursera	2025	https://www.coursera.org/learn/mlops-fundamentals			

REA	READING ARTICLE					
Sl. No.	Article name	Author	Year	Published at		
1	Industrial Edge MLOps: Overview and Challenges	Rani, Fatima	2024	Computer Aided Chemical Engineering 53: 3019-3024		

Proposed Assessment Plan (for 50 marks of CIE)

Tool	Remarks	Marks
Internals	3	40
QUIZ/AAT	2	10
Total		50

SEE Exam Question paper format:

Each unit will cover two questions for 20 marks and students can choose any one full question.

Autonomous Institute, Affiliated to VTU
DEPARTMENT OF Artificial Intelligence & Data Science

Sem	VIII		
Course Title:	Design Patterns		
Course Code:	23AI8PEDPT /23AI7PEDPT	Total Contact Hours: 40 ho	ours
L-T-P:	3-0-0	Total Credits:	3

Unit No.	Topics	Hrs
1	Introduction to UML: Importance of Modeling, Principles of Modeling,	8
	Object-Oriented Modeling, Overview of UML, A Conceptual Model of the	
	UML, Architecture, Software Development Life Cycle, Structural Modeling,	
	Behavioral Modeling, Architectural Modeling	
2	Introduction to Design Patterns: What is a Design Pattern, Design Patterns in	8
	Smalltalk MVC, Describing design patterns, the catalog of design pattern,	
	Organizing the catalog, How design patterns solve design problems, How to	
	select a design pattern, How to use a design pattern.	
3	A Case Study: Designing a Document Editor- Design Problems, Document	8
	Structure, Formatting, Embellishing the User Interface, and Supporting Multiple	
	Look - and - Feel Standards, Supporting Multiple Window Systems, User	
	Operations Spelling Checking and Hyphenation.	
	Creational Patterns: Introduction to Creational Patterns, Abstract Factory	
	Pattern, Builder Pattern, Factory Method Pattern, Prototype Pattern, Singleton	
	Pattern	
4	Structural Patterns: Introduction to Behavioral Patterns, Adapter Pattern,	8
	Bridge Pattern, Composite Pattern, Decorator Pattern, Façade Pattern, Flyweight	
	Pattern, Proxy Pattern.	
5	Behavioral Patterns: Introduction to Behavioral Patterns, Chain of	8
	Responsibility Pattern, Command Pattern, Interpreter Pattern, Iterator Pattern,	
	Mediator Pattern, Memento Pattern, Observer Pattern, Strategy Pattern, Template	
	Method Pattern, Visitor Pattern.	

Autonomous Institute, Affiliated to VTU DEPARTMENT OF Artificial Intelligence & Data Science

Prescribed	Text Book				
Sl. No.	Book Title	Authors	Edition	Publisher	Year
1.	The unified modeling	Grady Booch, James	First	Addison Wesley	1998
	language user guide	Rumbaugh and Ivar			
		Jacobson			
2.	Design Patterns:	Erich Gamma,		Addison Wesley	1994
	Elements of Reusable	Richard Helm, Ralph	_		
	Object-Oriented	Johnson, and John			
	Software	Vlissides			
Reference '	Text Book		I		
Sl. No.	Book Title	Authors	Edition	Publisher	Year
1.	Object-Oriented	Brahma Dathan,	Second	Springer	2015
	Analysis, Design and	Sarnath Ramnath			
	Implementation				
2.	Head First Design	Eric Freeman, Bert	First	O'Reilly	2004
	Patterns	Bates, Kathy Sierra,			
		and Elisabeth			
		Robson			

E-Book	E-Book							
Sl. No.	Book Title	Authors	Editio n	Publisher	Year	URL		
1.	The unified modeling language user guide	Grady Booch, James Rumbaugh and Ivar Jacobson	First	Addison Wesley	1998	https://patologia.c om.mx/informatic a/uug.pdf		
2.	Design Patterns: Elements of Reusable Object-Oriented Software	Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides	-	Addison Wesley	1994	https://www.javier 8a.com/itc/bd1/art culo.pdf		

MOOC Course							
Sl. No.	Course name	Course Offered By	Year	URL			
1.	Object Oriented System Development using UML, Java and Patterns	SWAYAM	2020	https://onlinecourses.nptel.a c.in/noc20_cs84/preview			
2.	Design Patterns	Coursera	2018	https://www.coursera.org/le arn/design-patterns			

Autonomous Institute, Affiliated to VTU

DEPARTMENT OF Artificial Intelligence & Data Science **Proposed Assessment Plan (for 50 marks of CIE)**

Assessment Tool	No. of Assessments	Marks
Internals	3	40
QUIZ/AAT	2	10
Tot	50	

SEE Exam Question paper format:

Each unit will cover two questions for 20 marks and students can choose any one full question.